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The Situation Today …
 Consumer and business software cannot

achieve further performance improvements
without parallelism.

 Is that a problem … or an opportunity?
 My goal today is not to “sell” new and

wondrous results, but to give a global
perspective on the parallel “problem”
answering:
 Why is it so hard?
 Where do we go from here?
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Outline Of This Talk

 Small Parallelism: today’s technology facts
 A Closer Look -- Facts of Life
 Large Parallelism: today’s technology facts
 A Closer Look -- Living with Parallelism
 A trivial exercise focuses our attention
 A little “science” can help



© Larry Snyder, All Rights Reserved

Today’s
Facts

Figure courtesy of Kunle 
Olukotun, Lance Hammond, 
Herb Sutter & Burton Smith

2x in 2yrs
Single
Processor

Opportunity
Moore’s law
continues, so
use more gates
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Today’s Facts

 Laptops, desktops, servers, etc. now are
parallel (mulitcore) computers … why?

 Multi-core gives “more” computation and
solves difficult hardware design problems
 What to do with all of the transistors: Replicate
 Power Issues
 Clock speeds

… consider each issue
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Multi-core Replicates Designs

 Traditionally we have used transistors to
make serial processors more aggressive
 Deeper pipelining, more look-ahead
 Out of order execution
 Branch prediction
 Large, more sophisticated TLBs, caches, etc.

 Why not continue the aggressive design?
… Diminishing returns, limit on ILP, few new ideas

Bottom Line: Sequential instruction execution reaching limits
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Size vs Power
 Power5 (Server)

 389mm^2
 120W@1900MHz

 Intel Core2 sc (laptop)
 130mm^2
 15W@1000MHz

 ARM Cortex A8 (automobiles)
 5mm^2
 0.8W@800MHz

 Tensilica DP (cell phones / printers)
 0.8mm^2
 0.09W@600MHz

 Tensilica Xtensa (Cisco router)
 0.32mm^2 for 3!
 0.05W@600MHz

Intel Core2

ARM

TensilicaDP

Xtensa x 3

Power 5

Each processor operates with 0.3-0.1 efficiency
of the largest chip: more threads, lower power
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Multi-core Design Space

 Smaller, slower implies more modest design

Gflops/W200.9power capacity

Gflops/mm130.6area capacity

Gflop/s12832peak throughput

words wide164vector operations

relative perf0.31single thread

42threads

GHz44frequency

W6.2537.5power

mm^21050size

in orderout of ordermicro-architecture

Source: Doug Carmean, Intel

Traditional Core Design
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Multi-cores Have Their Problems
 Single threaded computation doesn’t run faster (it

may run slower than a 1 processor per chip design)
 Few users benefit from m-c ||ism today

 Existing software is single threaded
 Compilers don’t help and often harm parallelism
 It’s often claimed that OS task scheduling is one easy

way to keep processors busy, but there are problems
 limited numbers of tasks available
 contention for resources, e.g. I/O bandwidth
 co-scheduled tasks often have dependences -- no

advantage to or prevented from running together
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Legacy Code

 Even casual users use applications with a
total code base in the 100s of millions LOC
… and it’s not parallel

 There are not enough programmers to
rewrite this code, even if it had || potential

 With single processor speeds flat or falling,
this code won’t improve

Challenge
How to bring performance
to existing programs
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What Can Microsoft Do?

 “Parallelism requires adjustments at every
level of the stack … the repartitioning of
different tasks to different layers … So look
for a rebalancing of roles and runtimes. We
need to formalize that in the operating
system. Expect the first pieces in the next
generation of Windows.” Craig Mundy, Microsoft
Chief Research & Strategy Officer, 3 October 2008
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Legacy Code

 Even casual users use applications with a
total code base in the 100s of millions LOC
… and it’s not parallel

 There are not enough programmers to
rewrite this code, even if it had || potential

 With single processor speeds flat or falling,
this code won’t improve

Challenge
How to bring performance
to existing programs

Opportunity
Much legacy code
supports backward
compatibility -- ignore



© Larry Snyder, All Rights Reserved

Potential of Many Threads - Amdahl

 Maximum performance improvement by
parallelism is S-fold if sequential part is1/S

 “Everyone is taught Amdahl’s Law in school,
but they quickly forget it” -- T. R. Puzak, IBM

 More complex in multi-core case: programs
that are 99% parallel get speedup of 72 on
256 cores [Hill & Marty]

TP  = 1/S⋅TS  + (1 - 1/S) ⋅ TS /P
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Summary So Far
 Opportunities --

 Moore’s law continues to give us gates
 Multi-core is easy design via replication
 Replicating small, slower processors fixes power

problems & improves ops/second
 Challenges --

 Smaller, slower designs are smaller, slower on 1 thread
 Huge legacy code base not improved
 Parallelism doesn’t speed-up sequential code. Period.
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Outline Of This Talk

 Small Parallelism: today’s technology facts
 A Closer Look -- Facts of Life
 Large Parallelism: today’s technology facts
 A Closer Look -- Living with Parallelism
 A trivial exercise focuses our attention
 A little “science” can help
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But There’s More To Consider
 Two processors may be

‘close’ on the silicon, but
sharing information is still
expensive

 r1  L1  L2  coherency
protocol  L2  L1  r2

 Opteron Dual Core: more
than 100 instruction times

 Latency between cores only
gets worse

Challenge
On Chip Latency
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Latency -- Time To Access Data
 Latencies (relative to instruction execution) have

grown steadily over the years, but (transparent)
caching has saved us

 No more
 Interference of multiple threads reduces the benefits of

spatial and temporal locality
 Cache coherence mechanisms are

 good for small bus-based SMPs
 slower and complex as size, distance and

decentralization increase

 Thus, latency growth is a problem
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Bandwidth On/Off Chip

 Many applications that are time-consuming
are also data intensive e.g. MPEG compress

 C cores share the bandwidth to memory:
available_bandwidth/C

 Caching traditionally solves BW problems,
but Si devoted to cache reduces number of
cores

 A problem best solved with better technology
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Memory Model Issues
 When we program, we usually think of a single

memory image with “one” history of transitions:
s0, s1, …, sk, …

 Not true in the parallel context
 Deep technical problem
 Two cases

 Shared memory
 Distributed memory

 The consequences of this fact are the largest
challenges facing parallel programming
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Facts of Life Summary: Challenges

 Latency on chip will increase as core count
increases
 significant already
 both logic complexity and “electronic” distance

 Bandwidth to L3 and memory shared
 Memory model for programmers

 Presently broken
 Extensive research has failed to find alternate
 May be a “show stopper”
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Outline Of This Talk

 Small Parallelism: today’s technology facts
 A Closer Look -- Facts of Life
 Large Parallelism: today’s technology facts
 A Closer Look -- Living with Parallelism
 A trivial exercise focuses our attention
 A little “science” can help
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Large Parallel Facts

 A parallel computer (IBM Roadrunner) has
achieved 1 Peta Flop/S (1.1×1015 Flop/S)
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Large Parallel Facts

 A parallel computer (IBM Roadrunner) has
achieved 1 Peta Flop/S (1.1×1015 Flop/S)

?
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Roadrunner Specs
 12,562 dual-core AMD Opteron® chips and

12,240 STI PowerXCell 8i chips (25.6 GF SP,
12.8 GF DP per SPE) … each AMD core gets a
Cell chip

 98 terabytes of memory
 3.8 MW total delivering 376 MFlops/W
 278 refrigerator-sized racks; 5,200 ft^2 footprint
 Other Data:

 10,000 connections – both Infiniband and Gigabit
Ethernet

 55 miles of fiber optic cable
 500,000 lbs.
 Shipped to Los Alamos in 21 tractor trailer trucks
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Performance: Top 500



Source: Top 500 Supercomputers



© Larry Snyder, All Rights Reserved

Performance: Top 500



Source: Top 500 Supercomputers

We are on track for
exa-scale computing 
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Performance: From 1st To Last



6-8 Years
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Earth Simulator

 Started at #1 June 2002, 35.8 TF
 Decommissioned Sept 2008; still at #73 #500=12.6TF
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Speed Increase: An Opportunity



1000 Yrs
1 Gflop/s

1 Year
1 Tflop/s

~8 Hrs
1 Pflop/s

~1 Sec
1 Eflop/s
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Node Structure of RoadRunner
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Hybrid Machine

•Opteron
•PPC
•SPE

3 ISAs
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Three Programming Levels: Challenge

 Programming Multiple Levels is not simply just 3
compilations
 SPE is difficult to program -- few HW goodies
 PPC is mostly orchestrating local data flow
 Opteron (contributes 3% of performance) mostly

orchestrates more global data flow
 Library support different for each ISA

 LINPAC has very favorable work/word character
 LINPAC benchmark has been developed over

many years; writing new HPC programs for this
architecture will be time consuming
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Interprocessor Communication

 Communication between two arbitrary
processors (latency) is a serious problem

 (Not considered today, but in Lecture1)

5000BlueGene/LSuper
4100-5100Itanium + MyrinetCluster
400-660Sun Fire E25KSMP
100AMDCMP

Lge range
=> cannot
be ignored
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Summary So Far, Large Scale
 Opportunities

 Moore’s law continues
 Large Scale on track for exa-scale machines

by about 2019, though there is much to do
 The advancement will be significant

1Kyears --> seconds
 Challenges

 Hybrid design requires difficult multilevel
programming

 Hardware “lifetimes” are short -- be general
 Latencies will continue to grow



© Larry Snyder, All Rights Reserved

Outline Of This Talk

 Small Parallelism: today’s technology facts
 A Closer Look -- Facts of Life
 Large Parallelism: today’s technology facts
 A Closer Look -- Living with Parallelism
 A trivial exercise focuses our attention
 A little “science” can help
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Life Times / Development Times
 Hardware -- has a “half-life” measured in

years
 Software -- has a “half-life” measured in

decades
 Exploiting specific parallel hardware

features risks introducing architecture
dependences the next platform cannot fulfill

 In parallel programming architecture “shows
through” … don’t make the view too clear
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Sequential Algorithms No Good Guide
 What makes good sequential and parallel

algorithms are different
 Resources

 S: Reduce instruction count
 P: Reduce communication

 Best practices
 S: Manipulate references, exploit indirection
 P: Reduce dependences, avoid interaction

 Look for algorithms with
 S: Efficient data structures
 P: Locality, locality, locality
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Good Algorithms Not Well Known

 What is the best way to multiply two dense
matrices in parallel?

 We all know good serial algorithms and
sequential programming techniques

 Parallel techniques not widely known, and
because they are different from sequential
techniques, should we be teaching them to
Freshmen in college?

Ans: In Lecture 1
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Programmer Challenge: Education

 Most college CS graduates have
 No experience writing parallel programs
 No knowledge of the issues, beyond

concurrency from OS classes
 Little concept of standard parallel algorithms
 No model for what makes a parallel algorithm

good

 Where do the programmers come from?
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Illustrating the Issues

 Consider the trivial problem of counting the
number of 3s in a vector of values on m-c
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Try # 1

 Assume array in shared memory; 8 way ||-ism
void count3s() {
   int count=0; int i=0; /* Create t threads */
   for (i=0;i<t;i++){
      thread_create(count3s_thread,i);
   }
   return count;
}
void count3s_thread(int id){
   int j;
   int length_per_thread=length/t;
   int start=id*length_per_thread;
   for (j=start; j<start+length_per_thread;j++) {
      if (array[j]==3) 
          count++;
   }
}

…



© Larry Snyder, All Rights Reserved

Try #1 Assessment

 Try #1 doesn’t even get the right answer!
 The count variable is not protected, so

there is a race as threads try to increment it
Thread i
...
lw   $8,count-off(gp)
addi $8,1
sw   $8,count-off(gp)
...
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Try #2
 Protect the shared count with a mutex lock

 This solution at least gets the right answer

void count3s_thread(int id){
   int j;
   int length_per_thread=length/t;
   int start=id*length_per_thread;
   for (j=start; j<start+length_per_thread;j++) {
      if (array[j]==3) {
          mutex_lock(m); 
          count++;
          mutex_unlock(m);
      }
   }
}
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Try #2 Assessment

 It doesn’t perform, however
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Try #3
 Include a private variable

 Contention, if it happens is limited

void count3s_thread(int id){
   int j;
   int length_per_thread=length/t;
   int start=id*length_per_thread;
   for (j=start; j<start+length_per_thread;j++) {
      if (array[j]==3) {
         private_count[id]++;
      }
   }
   mutex_lock(m); 
   count += private_count[id];
   mutex_unlock(m);
}
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Try #3 Assessment

 The performance got better, but still no
||-ism
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Try #3 False Sharing

 The private variables were allocated to one
or two cache lines

 Cache coherency schemes, which keep
everyone’s cache current operate on the
cache-line granularity … still contention
 Suppose two processors have the cache line
 When one writes, other is invalidated; refetch

priv_count[0] priv_count[1] priv_count[2] priv_count[3] …
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Try #4

 By simply adding padding to give each
private count its own cache line Try #3 works

 Notice that false sharing is a sensitivity
hardware dependent on f, the cache line size

 Machine features “show through”

struct padded_int {
  int val;
  char padding [60];
} private_count[t];
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Try #4 Assessment

 Finally, speed-up over serial computation

 It wasn’t so easy, and it wasn’t so great

1 processor  : 0.91
2 processors: 1.6
4 processors: 3.1
8 processors: 3.2
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Programming Challenges
 Today’s programmers not ||-programmers
 Much to worry about

 Standard abstractions (locks, etc.) too low level
 Memory Model (mentioned before) busted
 Parallelism “shows through”
 Hardware sensitivity (false sharing)
 Heavy intellectual investment

 Small task took serious effort
 Modest performance achieved
 Not yet a general solution

Houston, We Have Problem
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 Large Parallelism: today’s technology facts
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 A trivial exercise focuses our attention
 A little “science” can help
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Overcoming Sequential Control
 Many computations on a data sequence seem to

be “essentially sequential”
 Prefix sum is an example: for n inputs, the ith

output is the sum of the first i items
 Input:    2    1    5    3    7
 Output: 2    3    8  11  18

 Given x1, x2, …, xn find
y1, y2, …, yn s.t.

yi = Σ j≤i xj

246 810 16 1416
10

26

52
66

36

68 76
y5

x5
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Naïve Use of Parallelism
 For any yi a height log i tree finds the prefix: find it, add xi

 Much redundant computation
 Requires O(n2) parallelism for n prefixes

 Look closer at meaning of tree’s intermediate sums

46 10 1616

10 26

36

52y5

x5
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Naïve Use of Parallelism
 For any yi a height log i tree finds the prefix: find it, add xi

 Much redundant computation
 Requires O(n2) parallelism for n prefixes

 Look closer at meaning of tree’s intermediate sums

246 810 16 1416

10 26 30 10

36 40

76

46 10 1616

10 26

36

52y5

x5
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Naïve Use of Parallelism
 For any yi a height log i tree finds the prefix: find it, add xi

 Much redundant computation
 Requires O(n2) parallelism for n prefixes

 Look closer at meaning of tree’s intermediate sums

246 810 16 1416

10 26 30 10

36 40

76

root summarizes its leaves

46 10 1616

10 26

36

52y5

x5
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Speeding Up Prefix Calculations

 Putting the observations together
 One pass over the data computes global sum
 Intermediate values are saved
 A second pass over data uses intermediate

sums to compute prefixes
 Each pass will be logarithmic for n = P
 Solution is called: The parallel prefix algorithm

R. E. Ladner and M. J. Fischer
Parallel Prefix Computation
Journal of the ACM 27(4):831-838, 1980
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10

46 16 10 16 14 2 8

26 30 10

36 40

76

Parallel Prefix Algorithm

6        4            16         10             16         14            2           8

Compute sum going up
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10

46 16 10 16 14 2 8

26 30 10

36 40

76

0

Parallel Prefix Algorithm

6        4            16         10             16         14            2           8

Compute sum going up

Figure prefixes going down

Introduce a virtual
parent, the sum of
values to tree’s left: 0



© Larry Snyder, All Rights Reserved

10

46 16 10 16 14 2 8

26 30 10

36 40

76

0+360

0

Parallel Prefix Algorithm

6        4            16         10             16         14            2           8

Compute sum going up

Figure prefixes going down

Invariant: Parent data
is sum of elements to
left of subtree
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10

46 16 10 16 14 2 8

26 30 10

36 40

76

0+360

0

Parallel Prefix Algorithm

6        4            16         10             16         14            2           8

Compute sum going up

Figure prefixes going down

Invariant: Parent data
is sum of elements to
left of subtree

0 36
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10

46 16 10 16 14 2 8

26 30 10

36

0+100

40

36+3036

76

0+360

0

Parallel Prefix Algorithm

6        4            16         10             16         14            2           8

Compute sum going up

Figure prefixes going down

Invariant: Parent data
is sum of elements to
left of subtree

0 36
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10

46 16 10 16 14 2 8

26 30 10

36

0+100

40

36+3036

76

0+360

0

Parallel Prefix Algorithm

6        4            16         10             16         14            2           8

Compute sum going up

Figure prefixes going down

Invariant: Parent data
is sum of elements to
left of subtree

0 36

0 10 36 66
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10

0+60

44+66+06 16+1016 10+26 10 16+3616 14+52 14 2+662 8+68 8

26

10+1610

30

36+1636

10

66+266

36

0+100

40

36+3036

76

0+360

0

Parallel Prefix Algorithm

6        4            16         10             16         14            2           8
6         10             26         36             52         66           68         76

Compute sum going up

Figure prefixes going down

Invariant: Parent data
is sum of elements to
left of subtree
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10

0+60

44+66+06 16+1016 10+26 10 16+3616 14+52 14 2+662 8+68 8

26

10+1610

30

36+1636

10

66+266

36

0+100

40

36+3036

76

0+360

0

Parallel Prefix Algorithm

6        4            16         10             16         14            2           8
6         10             26         36             52         66           68         76

Each prefix is computed
in 2log n time, if P = n
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Available || Prefix Operators

 Most languages have reduce and scan (||
prefix) built-in for: +, *, min, max, &&, ||

 A few languages allow users to define ||
prefix operations themselves … do they?

 Parallel prefix is MUCH more useful
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Available || Prefix Operators

 Most languages have reduce and scan (||
prefix) built-in for: +, *, min, max, &&, ||

 A few languages allow users to define ||
prefix operations themselves … do they?

 Parallel prefix is MUCH more useful
 Length of Longest Run of x 
 Number of Occurrences of x 
 Histogram 
 Mode and Average
 Count Words 

 Length of Longest Increasing Run 
 Binary String Space Compression 
 Run Length Encoding 
 Balanced Parentheses
 Skyline

Why is there no standard programming abstraction?
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Conclusion +
 Most computers sold today are ||, and

nearly all are under-utilized
 No silver bullet will save us (Lecture 1)
 Languages, tools, libraries are not ready

 New software is needed to exploit ||ism
 Naïve parallel programming is difficult, subtle
 Higher abstractions help (Lecture 1 & 2)

 The “payoff” is to keep riding performance
wave
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Homework

  Further Questions?

HW: Use ||-prefix to test for balanced parentheses: ((()())()


