
35 Years of Research:
+ Results; - Results

Lawrence Snyder
www.cs.washington.edu/homes/snyder

9 April 2009

© Larry Snyder, All Rights Reserved

The Situation Today …

 We have ~35 years of research results to
draw upon --
 Many, who have worked in the area, think

much of it is important
 Many, who have NOT worked in the area, think

none of it is useful
 Many, who are encountering parallelism now

for the first time, assume nothing came before
 Where is the truth?

© Larry Snyder, All Rights Reserved

Outline Of This Talk

 In The Beginning: Let The Compiler Do It
 Parallel Prefix Abstraction
 The Parallel Programming Problem
 A Parallel Machine Model
 Maybe An Easier Model Would Be Better
 Applying CTA Model In Programming --

Derive an Algorithm

© Larry Snyder, All Rights Reserved

Parallel Programming State-of-the-Art

 The “parallel programming problem” has been
studied for 35+ years and we learned:
 Parallelism is best when it’s invisible
 Parallelizing compilers do not suffice (more later)
 Hardware has not yet given SW sufficient support
 “Silver Bullet” programming approaches do not

suffice
 “Blue Collar” parallel programs are built with

library-based tools: MPI/PVM, threads, OpenMP

© Larry Snyder, All Rights Reserved

The First Approach Was Easiest
 The original plan for programming Illiac IV, was to

have a compiler process Fortran IV programs,
producing parallel code

 Dave Kuck led the Illinois team
 Extremely Ambitious

 Fortran IV programs notoriously badly structured
 Compilation technology still very primitive
 Program analysis techniques nearly non-existent

 Ultimately, “production programs” written in assembler
 Kuck + many others continued to pursue the goal:

parallel_code = compilation(serial_code)

© Larry Snyder, All Rights Reserved

One (Of Many) Problems

 Loop carried dependences can get in way
 Decide if parentheses are balanced
i = 0;
open = 0;
while (content[i] != '') {
 if (content[i] == '(')
 open = open + 1;
 if (content[i] == ')')
 open = open - 1;
 if (open < 0)
 break;
 i++;
}
balanced = ! open;

content: a-f(c)*(d+f(e))
 open:0000110011112210

content: a-f)c)*(d+f(e))
 open:0000-1

© Larry Snyder, All Rights Reserved

Compiling: Graph Abstractions

Programs are
represented
as graphs

i = 0 open = 0

content[i]=="

content[i]==')'

content[i]=='('
open = open+1

open = open-1

open < 0

i = i + 1

balanced=!open

© Larry Snyder, All Rights Reserved

Compiling: Iterations - 0

i = 0 open = 0

content[i]=="

content[i]==')'

content[i]=='('
open = open+1

open = open-1

open < 0

i = i + 1

balanced=!open

Add edges to
mark where
uses are defined

© Larry Snyder, All Rights Reserved

Compiling: Iterations - 1

i = 0 open = 0

content[i]=="

content[i]==')'

content[i]=='('
open = open+1

open = open-1

open < 0

i = i + 1

balanced=!open

Add edges to
mark where
uses are defined

© Larry Snyder, All Rights Reserved

Compiling: Iterations - 2

i = 0 open = 0

content[i]=="

content[i]==')'

content[i]=='('
open = open+1

open = open-1

open < 0

i = i + 1

balanced=!open

Add edges to
mark where
uses are defined

© Larry Snyder, All Rights Reserved

Difficult To Analyze

 The computation is embodied in the “flow
dependences” and the truth of predicates
that specify it … it is difficult to analyze

Defs Uses

open = 0

open = open+1

open = open-1

open = open+1

open = open-1

open < 0

balanced=!open

© Larry Snyder, All Rights Reserved

After 35 years of research …
 In 2006 Kuck summed up the situation at a

workshop, “I still think it [parallelizing sequential
code] is possible, but it can’t be done yet.”

 In the intervening years
 Architectures kept changing … a problem; not serious
 Compiler transformations “worked” for vector machines
 Enormous funding was available
 Many of best researchers worked on the problem
 Program analysis became a sophisticated technology
 Source languages got much better, more structured
 Progress was made in many aspects of the task
 Commercial products were deployed

© Larry Snyder, All Rights Reserved

Why Hasn’t It Worked?
 In many restricted cases it has worked …

but those cases are not sufficient to
compile “general” programs

 I think the problem is fundamentally not
solvable based on the observation:
 The best sequential program and the best

parallel program for a task tend to be different
 The difference is not a simple transformation or

series of transformations
 The two programs embody different solution

paradigms This seems to be a fundamental barrier

© Larry Snyder, All Rights Reserved

Outline Of This Talk

 In The Beginning: Let The Compiler Do It
 Parallel Prefix Abstraction
 The Parallel Programming Problem
 A Parallel Machine Model
 Maybe An Easier Model Would Be Better
 Applying CTA Model In Programming --

Derive an Algorithm

© Larry Snyder, All Rights Reserved

10

0+60

44+66+06 16+1016 10+26 10 16+3616 14+52 14 2+662 8+68 8

26

10+1610

30

36+1636

10

66+266

36

0+100

40

36+3036

76

0+360

0

Recall Parallel Prefix Algorithm

6 4 16 10 16 14 2 8
6 10 26 36 52 66 68 76

What does this
picture mean?

© Larry Snyder, All Rights Reserved

44+66+06 16+1016 10+26 10 16+3616 14+52 14 2+662 8+68 8

Recall Parallel Prefix Algorithm

8 Processors &
comm pattern

0 1 2 3 4 5 6 7

© Larry Snyder, All Rights Reserved

10

0+60

44+66+06 16+1016 10+26 10 16+3616 14+52 14 2+662 8+68 8

26

10+1610

30

36+1636

10

66+266

36

0+100

40

36+3036

76

0+360

0

Recall Parallel Prefix Algorithm

0 1 2 3 4 5 6 7

8 Processors &
comm pattern

© Larry Snyder, All Rights Reserved

Use Parallel Prefix Abstraction …

 Thinking abstractly of “parallel prefix
computations”
 Abstract as combining adjacent pairs of

sequences: xxxxxxxx = llll + rrrr
 3 parts to the abstraction --

 initialize a descriptor (tally) for a singleton (i)
 combine tallies of 2 adjacent sequences (c)
 finish by extracting the answer from tally (f)

f(c(c(c(i(x) i(x)) c(i(x) i(x))) c(c(i(x) i(x)) c(i(x) i(x)))))

© Larry Snyder, All Rights Reserved

Applying || Prefix To Balanced ()s

 Consider
 Information to be carried along: tally
 How to join tallies of two independently

computed subsequences
 Consider what the output must be from tally

 The tally for “balanced parens” is two ints,
excess open parens opCount and excess
closed parents clCount

© Larry Snyder, All Rights Reserved

A || Prefix Solution

 Visualize a processor per point (not really*)
 Each point is initialized to a tally data structure
 Pairs are combined in some way
 Process continues until there is one tally
 Compute the final result

 Initialize on this problem:
a - f (c) * (d + f (e))
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1

a-f(c)*(d+f(e))

opCount

clCount

*compilers produce “coarse-grain” code

© Larry Snyder, All Rights Reserved

Tri-Partite Parallel Prefix

Combine two tallies:
tally.clCount = ltally.clCount;
tally.opCount = rtally.opCount;
int temp = ltally.opCount - rtally.clCount;
if (temp < 0)
 tally.clCount += abs(temp);
else
 tally.opCount += temp;

Initialize a tally:
if (inval == '(')
 int tally.opCount = 1;
else
 int tally.opCount = 0;
if (inval == ')')
 int tally.clCount = 1;
else
 int tally.clCount = 0;

Finalize result from tally:
outval = (tally.opCount == 0) && (tally.clCount == 0);

xxxxxxxx = llll + rrrr

© Larry Snyder, All Rights Reserved

Matching
Parens

 Working out
the details
Matching

a - f (c) * (d + f (e))
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1

© Larry Snyder, All Rights Reserved

Matching
Parens

 Working out
the details
Matching

a - f (c) * (d + f (e))
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1
a- f(c) *(d+ f(e))
0 1 0 1 0 1 0 0
0 0 1 0 0 0 1 1

© Larry Snyder, All Rights Reserved

Matching
Parens

 Working out
the details
Matching

a - f (c) * (d + f (e))
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1
a- f(c) *(d+ f(e))
0 1 0 1 0 1 0 0
0 0 1 0 0 0 1 1

© Larry Snyder, All Rights Reserved

Matching
Parens

 Working out
the details
Matching

a - f (c) * (d + f (e))
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1
a- f(c) *(d+ f(e))
0 1 0 1 0 1 0 0
0 0 1 0 0 0 1 1
a-f(c)*(d+f(e))
1 1 1 0
0 1 0 2

© Larry Snyder, All Rights Reserved

Matching
Parens

 Working out
the details
Matching

a - f (c) * (d + f (e))
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 1
a- f(c) *(d+ f(e))
0 1 0 1 0 1 0 0
0 0 1 0 0 0 1 1
a-f(c)*(d+f(e))
1 1 1 0
0 1 0 2
a-f(c)*(d+f(e))
1 0
0 1
a-f(c)*(d+f(e))
0
0

© Larry Snyder, All Rights Reserved

Tri-Partite Parallel Prefix

Combine two tallies:
tally.clCount = ltally.clCount;
tally.opCount = rtally.opCount;
int temp = ltally.opCount - rtally.clCount;
if (temp < 0)
 tally.clCount += abs(temp);
else
 tally.opCount += temp;

Initialize a tally:
if (inval == '(')
 int tally.opCount = 1;
else
 int tally.opCount = 0;
if (inval == ')') {
 int tally.clCount = 1;
else
 int tally.clCount = 0;

Finalize result from tally:
outval = (tally.opCount == 0) && (tally.clCount == 0);

xxxxxxxx = llll + rrrr

© Larry Snyder, All Rights Reserved

Matching
Parens

 Working out
the details
Mismatching

a - f) c) * (d + f (e))
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 1 1

© Larry Snyder, All Rights Reserved

Matching
Parens

 Working out
the details
Mismatching

a - f) c) * (d + f (e))
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 1 1
a- f) c) *(d+ f(e))
0 0 0 1 0 1 0 0
0 1 1 0 0 0 1 1

© Larry Snyder, All Rights Reserved

Matching
Parens

 Working out
the details
Mismatching

a - f) c) * (d + f (e))
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 1 1
a- f) c) *(d+ f(e))
0 0 0 1 0 1 0 0
0 1 1 0 0 0 1 1

© Larry Snyder, All Rights Reserved

Matching
Parens

 Working out
the details
Mismatching

a - f) c) * (d + f (e))
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 1 1
a- f) c) *(d+ f(e))
0 0 0 1 0 1 0 0
0 1 1 0 0 0 1 1
a-f) c)*(d+f(e))
0 1 1 0
1 1 0 2

© Larry Snyder, All Rights Reserved

Matching
Parens

 Working out
the details
Mismatching

a - f) c) * (d + f (e))
0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 1 1
a- f) c) *(d+ f(e))
0 0 0 1 0 1 0 0
0 1 1 0 0 0 1 1
a-f) c)*(d+f(e))
0 1 1 0
1 1 0 2
a-f)c)*(d+f(e))
1 0
2 1
a-f)c)*(d+f(e))
0
2

© Larry Snyder, All Rights Reserved

Summary on || Prefix

 By thinking abstractly of carrying along
information that describes the sequence,
combining adjacent subsequences, and
finally extracting a value, it is possible to
move directly to a || prefix solution

 Using the abstraction is an intellectually
different way of thinking about
computations

© Larry Snyder, All Rights Reserved

Outline Of This Talk

 In The Beginning: Let The Compiler Do It
 Parallel Prefix Abstraction
 The Parallel Programming Problem
 A Parallel Machine Model
 Maybe An Easier Model Would Be Better
 Applying CTA Model In Programming --

Derive an Algorithm

© Larry Snyder, All Rights Reserved

Parallel Programming Problem
 Virtually all || programs should be platform independent

 Recall: Machines have 1/2 life of years; programs have 1/2 life
of decades

 Parallel Software Development Problem: How do we
neutralize the machine differences given that
 Some knowledge of execution behavior is needed to write

programs that perform … the only interesting || programs?
 Programs must port across platforms effortlessly, meaning, by

at most recompilation

 Compare Sequential and Parallel Cases

© Larry Snyder, All Rights Reserved

RAM or von Neumann Model
 The Random Access Machine is our friend

 Control, ALU, (Unlimited) Memory, [Input, Output]
 Fetch/execute cycle runs 1 inst. pointed at by PC
 Memory references are “unit time” independent of

location
 Gives RAM it’s name in preference to von Neumann
 “Unit time” is not literally true, but caches fake it

 Executes “3-address” instructions
 Most other details (caches, I/O, etc.) ignored

It’s so intuitive, it seems like there’s no other way to compute!

© Larry Snyder, All Rights Reserved

Machine Model Problem (|| Case)
 In || programming, there is no single, logical machine to

imagine to be executing the program; parallel variations are
numerous
 SIMD | MIMD
 Shared memory | Distributed Memory
 Shared memory | Shared address space
 Narrow bisection bandwidth | Wide BiBW
 Cluster | MPP
 Etc.

 It’s not likely the perfect || machine invented soon
 How we think about parallel execution is the Parallel

Programming Problem

© Larry Snyder, All Rights Reserved

Options for Solving the PPP
 Adopt a very abstract language that can

target to any platform & ignore details …

© Larry Snyder, All Rights Reserved

Options for Solving the PPP
 Adopt a very abstract language that can

target to any platform & ignore details …
 How does a programmer know how efficient or

effective his/her code is? Interpreted code?
 What are the “right” abstractions and statement

forms for such a language?
 Emphasize programmer convenience?
 Emphasize compiler translation effectiveness?

 No one wants to learn a new language, no
matter how cool

© Larry Snyder, All Rights Reserved

Options for Solving the PPP

 Agree on a set of parallel primitives (spawn
process, lock location, etc.) and create
libraries that work w/ sequential code …

© Larry Snyder, All Rights Reserved

Options for Solving the PPP

 Agree on a set of parallel primitives (spawn
process, lock location, etc.) and create
libraries that work w/ sequential code …
 Libraries are a mature technology
 To work with multiple languages, limit base

language assumptions … L.C.D. facilities
 Libraries use a stylized interface (fcn call)

limiting possible parallelism-specific abstractions
 Achieving consistent semantics is difficult

© Larry Snyder, All Rights Reserved

Options for Solving the PPP

 Create an abstract machine model that
accurately describes common capabilities
and let the language facilities catch up …

© Larry Snyder, All Rights Reserved

Options for Solving the PPP

 Create an abstract machine model that
accurately describes common capabilities
and let the language facilities catch up …
 Not a full solution until languages are available
 The solution works in sequential world (RAM)
 Requires discovering (and predicting) what the

common capabilities are
 Solution needs to be (continually) validated

against actual experience

© Larry Snyder, All Rights Reserved

Summary of Options for PPP
 Adopt a very abstract language that can

target to any platform & ignore details …
 Agree on a set of parallel primitives (spawn

process, lock location, etc.) and create
libraries that work w/ sequential code …

 Create an abstract machine model that
accurately describes common capabilities
and let the language facilities catch up …

© Larry Snyder, All Rights Reserved

Outline Of This Talk

 In The Beginning: Let The Compiler Do It
 Parallel Prefix Abstraction
 The Parallel Programming Problem
 A Parallel Machine Model
 Maybe An Easier Model Would Be Better
 Applying CTA Model In Programming --

Derive an Algorithm

© Larry Snyder, All Rights Reserved

Generalization of RAM: PRAM
 Parallel Random Access Machine (PRAM)

 Unlimited number of processors
 Processors are standard RAM machines, executing

synchronously
 Memory reference is unit time
 Outcome of collisions at memory specified

 CRCW, CREW, EREW …

 The PRAM might approximate a multicore or
SMP, but it doesn’t abstract larger machines, so
not suitable for algorithm analysis

PRAM is too abstract, though not entirely irrelevant

© Larry Snyder, All Rights Reserved

CTA Model
 Candidate Type Architecture (CTA): A || model with P

standard processors, d degree, λ latency

 Node == processor + memory + NIC

…RAM RAM RAM RAM RAM

RAM

Interconnection Network

Key Property: Local memory ref is 1, global memory is λ

© Larry Snyder, All Rights Reserved

What CTA Doesn’t Describe
 CTA has no global memory … but memory could

be globally addressed
 Mechanism for referencing memory not specified:

shared, message passing, 1-side
 Interconnection network not specified, but there

are some details
 λ is not specified beyond λ>>1 -- cannot be

because every machine is different
 d is not specified except that it is “small”, one digit
 Controller, combining network “optional”

© Larry Snyder, All Rights Reserved

Interprocessor Communication
 The communication mechanism (shared memory,

1-sided, message passing) is not specified
 Implications

 Principles of operation are independent of communication
choice

 For shared memory machine, interpret “local memory” as
L1/L2 cache, privately used L3/RAM
 Avoid hazards of “memory consistency” by “staying local”
 Could simplify hardware by relaxing cache coherence

 Scalability potentially spans from multi-core to largest
MPPs

© Larry Snyder, All Rights Reserved

More On the CTA

 Consider what the diagram means…

…RAM RAM RAM RAM RAM

RAM

Interconnection Network

memmem

Fat Tree

© Larry Snyder, All Rights Reserved

More On the CTA

 Consider what the diagram means…

…RAM RAM RAM RAM RAM

RAM

Interconnection Network

memmem

Fat Tree

© Larry Snyder, All Rights Reserved

More On the CTA

 Consider what the diagram means…

…RAM RAM RAM RAM RAM

RAM

Interconnection Network

memmem

Fat Tree

© Larry Snyder, All Rights Reserved

More On the CTA
 Consider what the diagram doesn’t mean…

 After ACKing that CTA doesn’t model
buses, accept that it could be a good
approximation

…RAM RAM RAM RAM RAM

RAM

Interconnection Network

memmem

BUS

© Larry Snyder, All Rights Reserved

Typical Values for λ

 Lambda can be estimated for any machine
(given numbers include no contention or
congestion)

5000BlueGene/LSuper
4100-5100Itanium + MyrinetCluster
400-660Sun Fire E25KSMP
100AMDCMP

As with merchandizing: It’s location, location, location!

Lg λ range
=> cannot
be ignored

© Larry Snyder, All Rights Reserved

Programming Implications

 How does CTA influence programming?
 Consider …

 Expression evaluation: Same/Different?
 Relationship among processors?
 Data structures?
 Organization of work?
 …

© Larry Snyder, All Rights Reserved

Expression Evaluation
 The CTA processors are vN machines, so

normal sequential execution is unaffected if
the operands are local
 This stresses locality
 Insures caches work
 Exploits the architectural progress in processor

design over last 20 years … “basic blocks” that
stay in L1/L2 cache execute at maximum speed

 Therefore: Basic scalar computation preserved
with customary performance

© Larry Snyder, All Rights Reserved

Relationship Among Processors
 The processors are autonomous
 Memory is not coherent -- it’s a problem for the

programmer
 Each process has it’s own view on the computation --

must synchronize as needed
 Synchronization carries double cost, affecting both

“sides” of the handshake
 Reducing interactions speeds processing (locality again!)
 Managing interactions (they’re necessary) to lower their

impact is essential to success

© Larry Snyder, All Rights Reserved

Implications for Data Structures
 A key implication is that a process cannot be

oblivious to which portion of a data structure
that it has local

 Implications of decomposed data structures
 Working on partitioned data structures is more

complicated than working one unitary ones
 Load balancing and data structure partitioning

are intimately connected
 Races are easier to identify, handle
 Automatic isolation is beneficial

© Larry Snyder, All Rights Reserved

Organization of Work
 The computation must be explicitly parallel
 Implications

 Algorithms need to be rethought
 Very fine grain parallelism is a waste of time
 Minimize frequency of thread interaction
 Expect to compute things redundantly
 “First thing to try” is determine if existing (seq)

techniques can solve a local portion of the
problem, then combine results

Adopting the CTA implies significant change to algorithm development

© Larry Snyder, All Rights Reserved

Outline Of This Talk

 In The Beginning: Let The Compiler Do It
 Parallel Prefix Abstraction
 The Parallel Programming Problem
 A Parallel Machine Model
 Maybe An Easier Model Would Be Better
 Applying CTA Model In Programming --

Derive an Algorithm

© Larry Snyder, All Rights Reserved

Why CTA Is Right & PRAM is Wrong
 The machine model drives our thinking on

algorithms: It’s the basis for choosing solutions to
programming problems
 Compare the CTA and PRAM in this role
 Both models are simple
 Both models take RAM machines as nodes
 Both models have sequentially consistent memory, but

PRAM is global, CTA is local
 They differ in two notable ways

 PRAM is synchronous
 PRAM has a “unit cost” memory reference time

 Consider the consequences of this difference

© Larry Snyder, All Rights Reserved

Compare The Models

 Programming decision: What is the best
solution to finding the maximum of n values?
 For PRAM, the best Find_Max is Valiant’s Alg
 For CTA, the best Find_Max is Tournament Alg
 Time bounds for n = P processors

 Valiant (CRCW) O(log log n)
 Tournament O(log n)

 Choice of model determines program written
 Consider both solutions

© Larry Snyder, All Rights Reserved

Valiant’s Find_Max
 At the high level, Valiant’s algorithm

 Operates in rounds
 In each round a processor is used to make just one

comparison
 Groups of processors can decide for a set of values

which is largest; winner moves on to next round

P1
ans[1] = 1

a1:a2
set smaller
to 0 in ans;

promote
winners to
next round

P2
ans[2] = 1

a1:a3
set smaller
to 0 in ans;

promote
winners to
next round

P3
ans[3] = 1

a2:a3
set smaller
to 0 in ans;

promote
winners to
next round

P4
ans[4] = 1

a4:a5
set smaller
to 0 in ans;

promote
winners to
next round

P5
ans[5] = 1

a4:a6
set smaller
to 0 in ans;

promote
winners to
next round

P6
ans[6] = 1

a5:a6
set smaller
to 0 in ans;

promote
winners to
next round

…

{a1,a2,a3} {a4,a5,a6}

© Larry Snyder, All Rights Reserved

Second Round
 Fewer elements implies larger groups, say 7

 Requires 6+5+4+3+2+1 = 21 processors to find largest in
one step

 … until all that remains is a set with one element

a1:a2
a1:a3 a2:a3
a1:a4 a2:a4 a3:a4
a1:a5 a2:a5 a3:a5 a4:a5
a1:a6 a2:a6 a3:a6 a4:a6 a5:a6
a1:a7 a2:a7 a3:a7 a4:a7 a5:a7 a6:a7

{a1, a2, a3, a4, a5, a6, a7}

© Larry Snyder, All Rights Reserved

Analysis
 In the first round, there are n values, and n=P processors

…
 3 = 2+1 processors can find the largest of 3 values
 Round 1: Split n inputs into n/3 sets of 3 items each, requires

P processors to find n/3 maxes
 Now, fewer elements (n/3) and same number processors
 21 = 6+5+…+1 processors can find the largest of 7 values
 Round 2: Split n/3 inputs into n/(3*7) sets of 7 items each,

requires 21*n/(3*7) = P processors to find the maxes …
 Per round overhead is constant
 Analysis shows a double exponential reduction in problem

size, thus O(log log n) phases

Beautiful!

© Larry Snyder, All Rights Reserved

CTA Find_Max

 The CTA embeds a tree in the
interconnection network, and implements
the familiar tournament

246 810 16 1416

 6 16 16 8

16 16

16

© Larry Snyder, All Rights Reserved

PRAM Mispredicts Preferred Alg
 For task of finding maximum of n numbers
 Best algorithm

 CRCW PRAM: Valiant’s algorithm O(log log n) ★
 CTA Model: Tournament algorithm O(log n)

 What’s observed performance real implementation?
 PRAM communication on physical machine takes at least Ω

(log n) time, but generally much more
 Observed performance

 Valiant: O(log n log log n)
 Tournament: O(log n) ★
 The PRAM’s guidance is wrong

© Larry Snyder, All Rights Reserved

Drawing Conclusions

 Predicting the wrong solution is not a
happy outcome for a model

 The “problem” is the model ignores cost of
communication, so Valiant’s solution can
have unachievably fast memory reference

 Conclusions
 Model must be accurate on important costs
 Ignoring communication cost (λ) is dangerous

in parallel programming

© Larry Snyder, All Rights Reserved

Outline Of This Talk

 In The Beginning: Let The Compiler Do It
 Parallel Prefix Abstraction
 The Parallel Programming Problem
 A Parallel Machine Model
 Maybe An Easier Model Would Be Better
 Applying CTA Model In Programming --

Derive an Algorithm

© Larry Snyder, All Rights Reserved

Consider Using CTA Model

 Write a dense matrix multiplication program
 Standard sequential code is a place to

begin
for (i = 0; i < m; i++) {
 for (j = 0; j < p; j++) {
 C[i][j]=0;
 for (k = 0; k < n; k++) {
 C[i][j] += A[i][k] * B[k][j];
 }
 }
} Can we use this for parallel solution?

© Larry Snyder, All Rights Reserved

C = AB
 Dense Matrix Multiplication

 Could spawn thread to compute “dot product”
No collisions on writing values [almost]
Cached values evicted for (at least one of the) operands
Most data is resident on other processor: communication

 … better consider how data is stored -- blocks

x=

C A B
+ *= * + * + * + *+ * + * + *

© Larry Snyder, All Rights Reserved

Blocked View
 Tiling: a standard (sequential) reformulation

 Size of tile determined by the amount of each
matrix that fits in the cache … tend to be “small”

Sensitive to policy for getting next tile: strip mining
Replicates arrays multiple times
P processor = T tiles? P < T, probably; P < T1/2?

 Tiles are weak abstraction; they focus on reuse
(that’s good) but not data transfer (more critical)

x=

Message: The cost is data motion != reuse

© Larry Snyder, All Rights Reserved

Shift Interest To Operands
 Tiles focus on which processor owns result, but ignores the

cost of data transfer
 Consider which processors own operands

 As stated earlier, blocks avoid bias towards rows/columns …
then consider data motion
Local portion computed without data motion
Completing computation requires blocks of arrays owned by other

processors -- a large communication load

x=

© Larry Snyder, All Rights Reserved

Consider Data Motion
 To complete dot-products already started requires

considerable data transfer

 Slamming network harms contention
 Consider ways of reducing data blast …

 Send portions of subarrays

x=

x= Obvious X-fer but
not very useful

© Larry Snyder, All Rights Reserved

Adopt Compute-As-You-Go
 Algorithm has two phases

Local computation -- no communication
Iterative finish -- send-compute-receive
Data moved only once

 There’s complexity here because of 2 phases

Change point
of view away
from dot-prod

x=

x=

© Larry Snyder, All Rights Reserved

Change In View Point
+ *= * + * + * + *+ * + * + *

+ *= * + * + * + *+ * + * + *

+ *= * + * + * + *+ * + * + *

+ *= * + * + * + *+ * + * + *

= *

= *

= *

= *

= *

= *

= *

= *

= *

= *

= *

= *

= *

= *

= *

= *

© Larry Snyder, All Rights Reserved

Reorder Computation
 Eliminate the 2-phase property by making second

phase apply to all items

 Benefits
Simplify algorithm
Improve communication when broadcast is available
Reduce communication load by making all processors work

on the same portion of row/column
 Can add tiling as needed …

© Larry Snyder, All Rights Reserved

New Algorithm

 The logic goes as follows:
initialize C array to 0
for (i=1; i <= n; i++) {
 bdcast col (portion) of A to horizontal peers
 bdcast row (portion) of B to vertical peers
 accumulate all local ‘next terms’ of dot prod
}

© Larry Snyder, All Rights Reserved

Voila! We Found SUMMA
 The iterative redesign of the standard “triply nested loops”

algorithm resulted in the SUMMA algorithm (van de Geijn & Watts)
 Important milestones in thinking

 Noticed lack of locality
 Noticed tiles (std solution) focus on reuse and limit flexibility of

applying processors to algorithm
 Noticed block allocation unbiased
 Noticed full locality on local portion
 Noticed that continuing computation moved too much data, but

move of part of row/column per processor OK
 Noticed that “part move” could solve whole problem

Could a compiler have made these transformations?

© Larry Snyder, All Rights Reserved

Apply CTA to SUMMA
 How does CTA guide us understanding SUMMA

algorithm is best?
 Arrays will be partitioned and allocated to local

memories
 Each processor performs its computations locally
 Send row and column parts via the interconnection net
 Performance is

 Full parallelism for local processing
 λ for each row/col portion sent; broadcast
 Overlapping communication/computation may remove

λ charge

But isn’t programming SUMMA a total headache?

© Larry Snyder, All Rights Reserved

Summary

 As with most research areas, in parallel
computation some things worked, some
things didn’t
The parallel approach to computing … does require
that some original thinking be done about numerical
analysis and data management in order to secure
efficient use. In an environment which has
represented the absence of the need to think as the
highest virtue, this is a decided disadvantage.

-- Dan Slotnick, 1967

