

ADMin Adaptive Monitoring Dissemination for the Internet of Things

Demetris Trihinas, George Pallis, Marios D. Dikaiakos

{trihinas, gpallis, mdd}@cs.ucy.ac.cy

Department of Computer Science University of Cyprus

Demetris Trihinas trihinas@cs.ucy.ac.cy

The Internet of Things

Laboratory for

Internet Computing

The physical world is now becoming an information system

Physical (battery-powered) and network-enabled devices with <u>smart processing capabilities...</u>

Exchanging <u>continuous data streams</u> with other network-enabled devices, systems and humans...

Demetris Trihinas trihinas@cs.ucy.ac.cy

[HP, Oct 2016]

2020

44 Z B

(figure exceeds prior forecasts by 9 ZBs) ⁽¹⁾

Augmenting IoT with the Cloud

Laboratory for Internet Computing

[Cisco VNI, 2016]

IP Traffic 2.3ZB by 2020, 58% from loT and (video) streaming

2015

8.5 ZB

2012

2.8 ZB

"The cloud is not enough: Saving IoT from the cloud", B. Zhang et al., Usenix HotCloud 2015 "Taking the internet to the next physical level", V. Cerf and M. Senges, IEEE Computer, 2016

Demetris Trihinas	IEEE INFOCOM 2017
trihinas@cs.ucy.ac.cy	Atlanta, USA

Augmenting Edge Computing with the Cloud

Challenge 1 – Taming data volume and data velocity with limited processing and network capabilities in the IoT/Edge realm

Device	CPU Speed	Memory	Price
Intel NUC	1.3 GHz	16 GB	\$300
Typical Phones	2 GHz	2 GB	\$300
Discarded Phones	1 GHz	512 MB	\$40
BeagleBone Black	1 GHz	512 MB	\$55
Raspberry Pi	900 MHz	512 MB	\$35
Arduino Uno	16 MHz	512 MB	\$22
mbed NXP LPC1768	96 MHz	32 KB	\$10
Activity Wearable (Fitbit)	32 MHz	128 MB	\$150

Challenge 2 - IoT devices are usually battery-powered which means intense processing leads to less battery-life

Raspberry Pi 2 Model B	Power	
Idle state	420mA (2.1W)	
Max CPU load (400%)	800-1100mA (4W)	
Max CPU load (400%) + disk I/O	900-1200mA (4.5W)	
Max CPU load (400%) + disk I/O + send metrics over the network	1250-1400mA (6.25W)	

Processing and data dissemination are the main energy drains in embedded and mobile devices

"AdaM: Adaptive Monitoring Framework for Sampling and Filtering on IoT Devices", D. Trihinas et al., IEEE BigData 2015

Demetris	Trihinas
trihinas@c	s.ucy.ac.cy

Adaptive Dissemination

Preliminaries

- A metric stream $M = \{d \downarrow i\} \downarrow i = 0 \uparrow n$ published by a monitoring source is a large stochastic sequence of i.i.d datapoints, denoted as $d \downarrow i$, where i = 0, 1, ..., n and $n \to \infty$
- A datapoint $d\downarrow i$ is a tuple $(m\downarrow id, t\downarrow i, \nu\downarrow i)$ described by a unique identifier for the monitoring source $m\downarrow id$, a timestamp $t\downarrow i$ and a value

Model-Based Adaptive Dissemination

• Dynamically adapt dissemination rate by applying approximation techniques to sensed

University

of Cyprus

datapoints to reduce communication overhead

Laboratory for

Internet Computing

- Monitoring source maintains runtime estimation model ho(M) capturing monitoring stream evolution and variability
- At the $i \uparrow t h$ time interval instead of metric values, the model is disseminated
- Receiving entities **predict the IoT device state** from given model assuming subsequent

Demetris Tribinas tribinas@cs.ucy.ac.cy can be approximated $d \mathcal{V}_{Atlanta, ts} = f(\rho(M), d\mathcal{V}i)$ within given

Model-Based Adaptive Dissemination

• Monitoring source withholds further dissemination interacting with receiver

only when shifts in monitoring stream value distribution render model as

inconsistent with the actual IoT device state

decision g(M, M', t) = function?

Laboratory for

Internet Computing

trigger dissemination,

 $dist > \eta(\delta)$ decision criteria?

 $suppress\ dissemination, \ otherwise$

• If model parameterization is inconsistent, at this point, it must be updated

De trih

The **ADMin** Framework

- monitoring stream variability
- Reduces on device energy consumption and volume and velocity of data disseminated in streaming networks
- Balance between efficiency and accuracy with low-cost estimation process O(1)

netris Trihinas	IEEE INFOCOM 2017
inas@cs.ucy.ac.cy	Atlanta, USA

model must

be updated

estimated

datapoints

The **ADMin** Framework

Laboratory for Internet Computing

Low-Cost Approximate and Adaptive Estimation

- Phase 1: Update runtime monitoring stream evolution
- Phase 2: Detect gradual trends in monitoring stream

model must

be updated

estimated

datapoints

t.

t_{i+k}

Phase 1: Update runtime monitoring stream evolution $\rho(M)$

• Probabilistic Exponential Weighted Moving Average (PEWMA) to estimate $v \downarrow i + 1$ from $\mu \downarrow i$ and the standard deviation $\sigma \downarrow i + 1$:

 $v \downarrow i + 1 = \mu \downarrow i \bot \infty k$ like $i = \alpha (1 - \beta P \downarrow i)$ is probabilistically applied!

Datapoints labelled as "expected" if estimation lands in prediction

intervals determined from user confidence guarantees or "unexpected"

Phase 2: Detect over time gradual trends in monitoring stream to reduce "lagging" effects in monitoring stream evolution estimation

• Holt's Trend Method used to bring moving average to appropriate value base

$$X_{i} = \begin{cases} v_{i} - v_{i-1}, & i = 2\\ \gamma \ (\mu_{i} - \mu_{i-1}) + (1 - \gamma) \ X_{i-1}, & i > 2 \end{cases}$$

• Improve forecasting from 1-step ahead (moving

average) predictions to *k*-datapoint values

$$v \downarrow i + k | i \leftarrow \tau \mu \downarrow i + k X \downarrow i$$

Laboratory for

Internet Computing

The **ADMin** Framework

Laboratory for Internet Computing

Low-Cost Approximate and Adaptive Estimation

- Phase 1: Update runtime monitoring stream evolution
- Phase 2: Detect gradual trends in monitoring stream
- Phase 3: Seasonality enrichment

model must

be updated

estimated

datapoints

t_{i+k}

Phase 3: Test if seasonality enrichment is beneficial to estimation

process and update low-cost approximate model accordingly

- Tendency of the metric stream to exhibit behavior that repeats itself every *L* periods (e.g., hourly)
- Seasonal effects highly evident in IoT data (e.g., human biosignals, environmental data)

seasonal

University

of Cyprus

Seasonal with damped trend

Seasonal with exponential trend

Laboratory for

Internet Computing

• Holt Winter's Method used to estimate seasonal contribution

$$S_{i} = \begin{cases} 0, & i < L \\ \omega (v_{i} - \mu_{i} - X_{i}) + (1 - \omega) (v_{i} - S_{i-L}), & i > L \end{cases}$$

• Forecasting k-subsequent datapoints with trend and seasonality

 $v \downarrow i + k | i \leftarrow \tau \mu \downarrow i + k X \downarrow i + S \downarrow i$

• However... perfect seasonal behavior is rarely observed in real-life

Atlanta, USA

Laboratory for

trihinas@cs.ucy.ac.cy

Internet Computing

University

of Cyprus

• Online testing (T-Test) to determine if **seasonal contribution**

beneficial to estimation or not

 $v \downarrow i + k \mid i \leftarrow - \mu \downarrow i + k X \downarrow i$

- Detecting **optimal seasonality cycle** (*L*) is an open research challenge especially when different cycles exist in monitoring stream
- Approximate runtime seasonal periodicity detection
 - **ComCube Framework** (Matsubara et al., WWW, 2016): lightweight tensor-based and parameter-free framework for **near-optimal seasonal periodicity** detection

Demetris Trihinas trihinas@cs.ucy.ac.cy

The **ADMin** Framework

Low-Cost Approximate and Adaptive Estimation

- Phase 1: Update runtime monitoring stream evolution
- Phase 2: Detect gradual trends in monitoring stream
- Phase 3: Seasonality enrichment

Demetris Trihinas trihinas@cs.ucy.ac.cy

IEEE INFOCOM 2017 Atlanta, USA model must

be updated

Detect Shifts in Monitoring

t_{i+k}

Stream Evolution

estimated

datapoints

t.

Detecting Shifts in a Monitoring Stream

• Cumulative Sum (CUSUM) log-likelihood test to detect shifts in

monitoring stream value distribution which render estimation model as

Detecting Shifts in a Monitoring Stream

Laboratory for Internet Computing

Detecting Shifts in a Monitoring Stream

Trend and **seasonality knowledge** provide model with **greater accuracy** ($\mathcal{E} \rightarrow \mathcal{F}\mathcal{E}$) and to

adapt to unexpected, abrupt and and volatile changes is monitoring stream

Challenge 2: CUSUM threshold *h* static and **sensitive** when stream variability is low $(\sigma \rightarrow 0)$ thus triggering... **false alarms** Adapt CUSUM sensitivity by adapting

h after dissemination triggered and restrict *h* with *h*_{min}

 $h_i = \max\{h_{min}, h(\delta_i, \sigma_i)\}$

Demetris Trihinas trihinas@cs.ucy.ac.cy

Laboratory for

Internet Computing

Evaluation

Demetris Trihinas trihinas@cs.ucy.ac.cy

ADMin Evaluation

- **ADMin** in 3 configurations
 - No seasonality enrichment (ADMin)
 - Static seasonality enrichment previous day hourly average (ADMin_S1)
 - Dynamic seasonality enrichment ComCube integration (ADMin_S2)
- Under comparison frameworks
 - LANCE [Werner et al., ACM SenSys 2011]
 - **G-SIP** [Gaura et al., IEEE Trans. on Sensors 2013]
 - **ADWIN** [Bifet et al., SIAM 2010]

All three under-comparison framework parameters configured to output best results

Real-World Datasets

Photovoltaic Panel Current (I_{DC}) Production Periodicity: 1 second, Duration: 2 weeks (Jan 2015)

Wearable Human Heartrate (bpm) Periodicity: 1 min, Duration: 1 month (Mar 2016)

Weather Station Air Temperature (°C) Periodicity: 1 second, Duration: 2 weeks (Jan 2015)

Fitbit Data Extractor

Open-sourced to extract YOUR own RAW data from fitbit

(steps, heartrate, calories, active minutes, distance)

https://github.com/dtrihinas/FitbitDataExtractor

Demetris Trihinas trihinas@cs.ucy.ac.cy

"Big Data" Testbeds

Daemon emulates **PV** and **Temperature** trace behavior while feeding samples to each algorithm

Android Emulator + SensorSimulator

128MB RAM, Single Core ARM 32MHz

SensorSimulator script emulates heartrate readings by feeding datapoints to Android Wear emulator for processing

Shift Detection Accuracy Evaluation

- Comparison of number of monitoring stream disseminations triggered for shifts that actually occurred (true positives) and number of false alarms (false positives)
- Ground truth pre-determined offline by PELT algorithm [Killick, 2012]

ADMin features high accuracy (>90%) and low false alarm ratio (<10%) which is drastically reduced when incorporating seasonality knowledge by at least 47% compared to the other approaches

Laboratory for

Internet Computing

Shift Detection Delay Evaluation

• Shift detection delay is the difference in time to when a shift is detected by a

technique compared to the actual time of occurrence

Framework	PV Current	Temperature	Heartrate
	(Time	(Time	(Time
	Intervals)	Intervals)	Intervals)
ADWIN	9.34 ± 3.47	9.94 ± 3.84	10.39 ± 3.96
G-SIP	10.02 ± 3.96	11.76 ± 4.16	14.17 ± 4.93
LANCE	10.78 ± 4.12	12.63 ± 3.92	15.97 ± 4.12
ADMin	6.04 ± 2.19	7.12 ± 1.97	8.03 ± 2.78
$ADMin_{S1}$	3.13 ± 2.03	5.11 ± 2.10	6.22 ± 2.83
$ADMin_S2$	$\textbf{2.62} \pm \textbf{1.94}$	$\textbf{3.23} \pm \textbf{2.26}$	$\textbf{4.73} \pm \textbf{2.43}$

ADMin outperforms other techniques by at least 29%

When incorporating **trend** and **seasonality knowledge** even for datasets with irregular seasonal behavior **ADMin reduces shift detection time by at least 67%** compared to the other techniques

Laboratory for

Internet Computing

Overhead Evaluation

- Other than accuracy evaluation no other study undergoes overhead evaluation!
- Periodic dissemination baseline added with 10 time interval aggregation window

ADMin reduces energy consumption by at least 76% and when incorporating

seasonality knowledge by at least 83%

Demetris Trihinas trihinas@cs.ucy.ac.cy

Overhead Evaluation

ADMin reduces data volume by at least 60% while maintaining accuracy always above

86%

With seasonality knowledge data volume is reduced by at least 71% while accuracy is

always above 91%

Demetris Trihinas trihinas@cs.ucy.ac.cy

Weather Station Air Temperature (°C)

Data reduction: 85% -- Accuracy: 92%

So... does ADMin work?

Photovoltaic Panel Current (I_{DC}) Production

2 Weeks of data collected every 1 second

Data reduction: 87% -- Accuracy: 93%

Wearable Human Heartrate (bpm)

1month of data collected every 1 minute

Data reduction: 80% -- Accuracy: 90%

Demetris Trihinas trihinas@cs.ucy.ac.cy

Acknowledgments

ADMin is now part of the ADAptive Monitoring framework (AdaM)

http://linc.ucy.ac.cy/AdaM

UNICORN

Co-funded by the H2020 framework of the European Commission

Demetris Trihina	as
trihinas@cs.ucy.ac	.cy

ADMin Adaptive Monitoring Dissemination for the Internet of Things

Demetris Trihinas, George Pallis, Marios D. Dikaiakos

{trihinas, gpallis, mdd}@cs.ucy.ac.cy

Department of Computer Science University of Cyprus

Demetris Trihinas trihinas@cs.ucy.ac.cy

Backup Slides

Periodic Dissemination

• The process of triggering the network controller of a monitored source every T

time units such that the *iîth* datapoint is disseminated at time $t l i - i \cdot T$ No data loss Monitoring Source Receiving Entity

• Cost of Monitoring Dissemination ($\beta_s \ll \mu_s$)

$$\left\{\begin{array}{c} \mu \downarrow s + \beta \downarrow s \cdot \chi \\ per message cost \\ per \chi byte cost \end{array}\right\} \qquad datapoint d (t,v) \\ -> message compression$$

20000 18000 16000 Network Traffic (kbps) 15000 10000 0009 4000 2000 0 40 60 80 100 140 Time Intervals **EWMA** after spikes Initial Signal ---- PEWMA ---- EWMA **EWMA** slow to overestimates acknowledge spikes subsequent values

Why use a Probabilistic EWMA?

With probabilistic reasoning each datapoint will contribute to the

estimation process depending on it's p-value

Demetris	Trihinas
trihinas@c	s.ucy.ac.cy

Laboratory for Internet Computing

> IEEE INFOCOM 2017 Atlanta, USA

University

Comparison Towards State-of-the-Art Frameworks

- LANCE [Werner et al., ACM SenSys 2011] disseminates summaries of windowed data (weighted avg) with receiver deciding if data is useful when summary violates a user-defined policy (e.g., user given confidence intervals)
- **G-SIP** [Gaura et al., IEEE Trans. on Sensors 2013] disseminates updates only when datapoint value rate of change cannot be predicted from previous value knowledge (EWMA) within given user-defined accuracy guarantees
- ADWIN [Bifet et al., SIAM 2010] uses a linear Naive Bayes predictor as its estimation model along with two sliding windows to detect shifts in model based on user given confidence intervals

All three framework parameters configured to output best results

t_{i+k}

The **ADMin** Framework

Laboratory for Internet Computing

- Adapts dissemination rate of IoT device based on monitoring stream variability
- Reduces on device energy consumption and volume and velocity of data generated in

streaming networks

Demetris Trihinas	IEEE INFOCOM 2017	26
trihinas@cs.ucy.ac.cy	Atlanta, USA	36