



# Low-Cost Adaptive Monitoring Techniques for the Internet of Things

#### The AdaM Framework

**Demetris Trihinas** 

**University of Cyprus** 

trihinas@cs.ucy.ac.cy







#### This talk is based on...

AdaM: an Adaptive Monitoring Framework for Sampling and Filtering on IoT Devices, D. Trihinas and G. Pallis and M. D. Dikaiakos, **2015 IEEE International Conference on Big Data (IEEE BigData 2015**), Santa Clara, CA, USA Pages: 717–726, 2015.

Low-Cost Adaptive Monitoring Techniques for the Internet of Things, D. Trihinas and G. Pallis and M. D. Dikaiakos, Transactions on Big Data, 2016, (In Review).



#### IoT **was** initially devices **sensing** and **exchanging** data streams with humans or other network-enabled devices

Cisco Blog > Internet of Everything

Growing up with Sensors and Smart Devices: How will the Internet of Everything Impact Our Children?



Sheila Jordan | October 2, 2013 at 4:34 pm PST



**Demetris Trihinas** 





# Edge-Mining

#### A term coined to reflect data processing and decision-making on

#### "smart" devices that sit at the edge of IoT networks



#### ...our devices just got a little bit more "smarter"...

**Demetris Trihinas** 





# The "Big Data" in IoT

BY THE YEAR 2020, THERE WILL BE [IDC, Big Data in IoT, 2014]

50,000,000,000 connected devices, creating and sharing

# 40,000,000,000,000 GB

worth of data across the Internet of Things.

[Cisco, IBSG, Apr 2011]



#### More Connected Devices Than People



 Taming data volume and data velocity with limited processing and network capabilities

| Device           | CPU Speed | Memory | Price  |
|------------------|-----------|--------|--------|
| Intel NUC        | 1.3 GHz   | 16 GB  | ~\$300 |
| Typical Phones   | 2 GHz     | 2 GB   | ~\$300 |
| Discarded Phones | 1 GHz     | 512 MB | ~\$22  |
| BeagleBone Black | 1 GHz     | 512 MB | \$55   |
| Raspberry Pi     | 900 MHz   | 512 MB | \$35   |
| Arduino Uno      | 16 MHz    | 512 MB | ~\$22  |
| mbed NXP LPC1768 | 96 MHz    | 32 KB  | \$10   |

Zhang et al., Usenix HotCloud, 2015

• IoT devices are usually battery-powered which means **intense** 

processing results in increased energy consumption (less battery-life)

| Pi State                                          | Power Consumption     |
|---------------------------------------------------|-----------------------|
| Idle                                              | 420 mA (2.1W)         |
| 400% CPU load                                     | 800-1100 mA (~4W)     |
| 400% CPU load + write to disk                     | 900-1200 mA (~4.5W)   |
| 400% CPU load + write to disk + send over network | 1250-1400 mA (~6.25W) |

#### **Raspberry Pi 2 Bench Test**

**Demetris Trihinas** 

Laboratory for

Internet Computing

University

of Cyprus

# Low-Cost Adaptive Monitoring Techniques

Adaptive Sampling and Filtering

**Demetris Trihinas** 





### **Metric Stream**

- A metric stream  $M = \{s \downarrow i\} \downarrow i = 0 \ n$  published from a monitoring source is a large sequence of samples, denoted as  $s \downarrow i$ , where i = 0, 1, ..., n and  $n \to \infty$
- Each sample  $s \downarrow i$  is a tuple  $(t \downarrow i, v \downarrow i)$  described by a timestamp  $t \downarrow i$ and a value  $v \downarrow i$







# Periodic Sampling

• The process of triggering the collection mechanism of a monitored source every

*T* time units such that the  $i \uparrow th$  sample is collected at time  $t \downarrow i = i T$ 



Compute resources and energy are wasted while generating large data volumes at a high velocity



**Demetris Trihinas** 





# Adaptive Sampling

• Dynamically adjust the sampling period  $T\downarrow i$  based on some function

 $\rho(M)$ , containing information of the metric stream evolution



• Find the max  $T \in [T \downarrow min, T \downarrow max]$  to collect sample  $s \downarrow i + 1$  based on an estimation of the evolution of the metric stream  $\rho(M)$ , such that M'

differs from M less than a user-defined imprecision value  $\gamma$  ( $dist < \gamma$ )  $T^* = \underset{T}{\arg \max} \{ f(s, T, \rho(M), dist, \gamma) \mid dist < \gamma, T \in [T_{min}, T_{max}] \}$ 





# Metric Filtering

- The process of suppressing metric value dissemination when consecutive values do not "change" (e.g. differ less than a range of values)
- **Goal**: Reduce data volume and network overhead in favour of exact precision
- How much "change" is required, depends on the type of filter applied
- The receiver-side (e.g., base station, monitoring server) assumes that the values of any unreported metrics remain unchanged





### **Metric Filtering**

• Fixed Range Metric Filters

```
if (curValue \in [prevValue - R, prevValue + R ])
```

```
filter(curValue)
```



No samples are filtered





## Adaptive Filtering

• Dynamically adjusting the filter range R based on the current variability

of the metric stream, denoted as q(M)



• Find the max filter range  $R \downarrow i + 1 \in [R \downarrow min, R \downarrow max]$  for sample

 $s \downarrow i + 1$  such that  $M \uparrow I$  differs from M less than a user-defined

imprecision value  $\gamma$  based on the variability of the metric stream Demetris Trihinas Talk at TU Berlin, 15 mar. 2015





### The Adaptive Monitoring Framework



- Software library with no external dependencies embeddable on IoT devices
- **Reduces processing, network traffic and energy consumption** by adapting the monitoring intensity based on the metric stream evolution and variability
- Achieves a balance between efficiency and accuracy <a href="https://github.com/dtrihinas/AdaM">https://github.com/dtrihinas/AdaM</a>

It's open-source! Give it a try!

# AdaM's Algorithms

Adaptive Sampling & Filtering

**Demetris Trihinas** 





# Adaptive Sampling Algorithm

• Step 1: Compute the distance  $\delta \downarrow i$  between the current two

consecutive sample values

 $\delta \downarrow i = |v \downarrow i - v \downarrow i - 1|$ 

Why use the distance instead of the current value?



Threshold-base techniques increase sampling rate while sample values

approach a user-defined threshold

- Good for anomaly detection (e.g. DDoS attacks)
- But, what about events away from threshold? (e.g. low rate DDoS attacks)





# Adaptive Sampling Algorithm

• Step 2: Compute metric stream evolution based on a Probabilistic Exponential Weighted Moving Average (PEWMA) to estimate  $\delta \downarrow i+1$ and the standard deviation  $\sigma \downarrow i+1$ :

 $\delta \downarrow i+1 = \mu \downarrow i = a \cdot \mu \downarrow i-1 + (1-a) \delta \downarrow i$ Looks like an exponential moving average, right?

But weighting is probabilistically applied!

 $a = \alpha (1 - \beta P \downarrow i)$ 

$$s_{1} = \mu_{i} \leftarrow \tilde{a_{i}} \cdot s_{1} + (1 - \tilde{a_{i}}) \cdot \delta_{i}$$

$$s_{2} \leftarrow \tilde{a_{i}} \cdot s_{2} + (1 - \tilde{a_{i}}) \cdot \delta_{i}^{2}$$

$$\hat{\delta_{i+1}} \leftarrow s_{1}$$

$$\sigma_{i+1} \leftarrow \sqrt{s_{2} - s_{1}^{2}}$$

Moving standard deviation with only previous value knowledge







#### Simple EWMA is volatile to abrupt transient changes

- Slow to acknowledge spike after "stable" periods
- If "stable" phases follow sudden spikes, then subsequent values are overestimated

Sounds a lot like a job for

a Gaussian distribution!

Laboratory for

Internet Computing



Der



# Adaptive Sampling Algorithm

- Step 3: Compute actual standard deviation  $\sigma \downarrow i$
- Step 4: Compute the current confidence  $(c \downarrow i \leq 1)$  of our approach based on the actual and estimated standard deviation

 $c\downarrow i = 1 - |\sigma \downarrow i - \sigma \downarrow i| / \sigma \downarrow i$ 

... the more "confident" the algorithm is, the larger the

outputted sampling period  $T \downarrow i+1$  can be...

• Step 5: Compute sampling period  $T \downarrow i + 1$  based on the current

confidence and the user-defined imprecision  $\gamma$  (e.g. 10% tolerance to

errors)  

$$T_{i+1} = \begin{cases} T_i + \lambda \cdot (1 + \frac{c_i - \gamma}{c_i}), & c_i \ge 1 - \gamma \\ T_{min}, & else \end{cases}$$

$$A \text{ is an aggressiveness multiplier (default \lambda=1)}$$

$$Talk at TU Berlin, 15 \text{ mar. 2015}$$

$$Talk at TU Berlin, 15 \text{ mar. 2015}$$

$$Talk at TU Berlin, 15 \text{ mar. 2015}$$





# Adaptive Filtering Algorithm

• Step 1: Compute the current variability of the metric stream using a moving Fano Factor  $F\downarrow i$  based on exponentially weighted average  $\mu\downarrow i$  and standard deviation  $\sigma\downarrow i$  already computed from adaptive sampling

 $F\downarrow i = \sigma \downarrow i \uparrow 2 / \mu \downarrow i$ 

...a low  $F\downarrow i$  (due to  $\sigma\downarrow i$ ) indicates a currently in-dispersed data stream which means low variability in the metric Why use variability and not follow a stepwise approach?  $R\downarrow i = R\downarrow i - 1 \pm 0.01 \cdot R\downarrow i - 1$ 

Even for a 1% adjustment critical values can be filtered out in biosignal monitoring





# Adaptive Filtering Algorithm

• Step 2: Compute the new filter range  $R \downarrow i + 1$  based on  $F \downarrow i$  and the user-defined imprecision  $\gamma$ 

$$R_{i+1} \leftarrow R_i + \lambda \cdot (\frac{\gamma - F_i}{\gamma})$$



O(1) complexity as all steps only use their previous values!

**Demetris Trihinas** 

# Evaluation

**Demetris Trihinas** 





### AdaM vs State-of-the-Art

- i-EWMA [1]: an EWMA adapting sampling period by 1 time unit when the estimated error (ε) is under/over user-defined imprecision
- L-SIP [2]: a linear algorithm using a double EWMA to produce estimates of current data distribution based on rate values change
  - Slow to react to highly transient and abrupt fluctuations in the metric stream
- FAST [3]: an (aggressive) framework using a PID controller to compute (large) sampling periods accompanied by a Kalman Filter to predict values at non sampling points





#### Datasets



**Demetris Trihinas** 





### Our Small "Big Data" Testbeds





Daemon on OS emulates traces while feeding samples to each algorithm





#### Android Emulator + SensorSimulator 128MB RAM, Single Core ARM 32MHz

SensorSimulator script emulates traces by feeding samples to **Android Wea**r emulator for Step and Heartrate processing





perf

[52.39%]

[54.06%]

[54.55%]

[34.57%]

[35.41%]

Watts

18.10 18.38 19.34

19.06

RECETVE

### **Evaluation Metrics**

18958.753000

15,948,867,062

7,031,455,736

2,441,446,273

100,485,013

215,898,656

25,810,218

16,880

0

5,566

Estimation Accuracy – Mean Absolute Percentage Error (MAPE)

$$MAPE_n = \frac{1}{n} \sum_{i=1}^{n} |\frac{A_i - E_i}{A_i}| \cdot 100\%$$

Performance counter stats for 'java -cp sampling.jar SamplerAS fitbit\_avg\_dataset.csv':

±

0.443 CPUs utilized

44.09% frontend cycles idle

0.63% backend cycles idle

2.88 stalled cycles per insn [34.97%]

SENT

0.15 insns per cycle

11.95% of all branches

0.890 K/sec

0.000 K/sec

0.294 K/sec

0.841 GHz

11.388 M/sec

DEV

task-clock (msec)

context-switches

stalled-cycles-frontend #

stalled-cycles-backend

cpu-migrations

page-faults

instructions

branch-misses

branches

42.759120417 seconds time elapsed

cycles

• CPU Cycles

Outgoing Network Traffic

nethogs



Edge Device Energy Consumption\*
 Powerstat a

|     | ACPI battery power measurments will start in 2 seconds time |      |      |     |      |     |     |        |       |      |      |      |
|-----|-------------------------------------------------------------|------|------|-----|------|-----|-----|--------|-------|------|------|------|
| bac | Time                                                        | User | Nice | Sys | Idle | 10  | Run | Ctxt/s | IRQ/s | Fork | Exec | Exit |
| anu | 15:01:05                                                    | 2.1  | 0.0  | 2.5 | 95.3 | 0.1 | 1   | 3435   | 2050  | 0    | 0    | 0    |
|     | 15:01:15                                                    | 1.7  | 0.0  | 1.3 | 96.9 | 0.1 | 3   | 690    | 658   | 0    | 0    | Θ    |
| **  | 15:01:25                                                    | 4.9  | 0.0  | 1.6 | 93.5 | 0.0 | 1   | 1289   | 1040  | e    | θ    | Θ    |
|     | 15:01:35                                                    | 8.3  | 0.0  | 5.3 | 86.2 | 0.3 | 1   | 9342   | 5138  | 1    | 0    | 0    |
| -   | 15:01:45                                                    | 5.1  | 0.0  | 0.9 | 94.0 | 0.0 | 1   | 1286   | 1069  | Θ    | θ    | θ    |

 $E = P_{idle} \cdot \tau_{idle} + P_{cpu} \cdot \tau_{cpu} + P_{io} \cdot \tau_{cpuwait} + P_{net} \cdot \tau_{net}$ 

\*Xiao et al., ACM DAC, 2010

\*\*Brooks, ACM SIGARCH, 2000 Other than error evaluation no other study goes through an overhead study!

Wattch

**Demetris Trihinas** 





# **Error Comparison**

AdaM (λ=1) ---+--- AdaM (λ=2) ---×---



L-SIP -----



Even in a more aggressive configuration ( $\lambda$ =2) AdaM is still comparable to L-SIP

**Demetris Trihinas** 





For a wide range of γ-parameter values we compute AdaM's MAPE per trace



Even for extreme imprecision values (>0.3) AdaM can still take correct

decisions signifying the importance of the confidence metric

**Demetris Trihinas** 

Laboratory for

Internet Computing





#### So How Well Does AdaM Perform?



**CPU Trace** 

Carnegie Mellon RainMon Project

**Memory Trace** Java Sorting Benchmark



original trace AdaM 180 160 140 120 100 80 60 40 20 0 Ó O 50 200 250 100 150 Time Intervals

Disk I/O Trace Carnegie Mellon RainMon Project



Fitbit Charge HR Wearable

**TCP Port Monitoring Trace Cyber Defence SANS Tech Institute** Fitbit Charge HR Wearable

**Step Trace** 

300





### **Overhead Comparison (1)**



**Energy Consumption** 





### **Overhead Comparison (2)**







## **Overhead Comparison (2)**





**Demetris Trih** 



## **Overhead Comparison (3)**





In the case of **heartrate monitoring** where signal analysis on AC wavelets reflected on wrist arteries is needed, **AdaM reduces energy consumption by 86%** 

**Calorie Counting** is based on human body indicators (age, weight, height) and heartrate monitoring



AdaM's MAPE grows from 6.42% in heartrate monitoring to 9.07% in calorie counting

in contrast to FAST with 13.61% and 21.83% respectively





#### **Overhead Comparison (4)**







 Integrated AdaM to a data streaming system

Laboratory for

Internet Computing

- JCatascopia Cloud Monitoring System
  - JCatascopia Agents (data sources) use AdaM to adapt monitoring intensity
  - Archiving time is measured at JCatascopia
     Server to evaluate data velocity
- Compare AdaM over Periodic Sampling



#### https://github.com/dtrihinas/JCatascopia

JCatascopia: Monitoring Elastically Adaptive Applications in the Cloud. Trihinas, D.; Pallis, G.; and Dikaiakos, M. D. In the 14th IEEE/ ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID 2014), pages 226-235, May, Chicago, IL, USA, 2014.





# Scalability Evaluation (2)

• **Dublin Smart City Intelligent Transportation Service** (Dublin ITS)



1000 Buses\* with GPS tracking sending updates to ITS with 16 params (e.g. busID, location, current route delay) Apache Kafka queuing service on x-large VM (16VCPU, 16GB RAM, 100GB Disk)

Apache Spark cluster with 5 workers on large VMs (8VCPU, 8GB RAM, 40GB Disk)

Alerts ITS operators when more than 10 buses in a Dublin city area, per 5min window, are reporting delays over 1 standard deviation from their weekly average

\*Real data from Jan. 2014

**Demetris Trihinas** 





# Scalability Evaluation (3)

Spark total delay (processing + scheduling) for T=1, 5, 10 intervals and

AdaM with max imprecision  $\gamma = 0.15$ 







AdaM achieves an 83% average accuracy with >85% in all major Dublin areas

compared to 46% for T=5s and 17% for T=10s

High variety of sampling rates used throughout the hours of the day showing the

need of adaptive sampling

**Demetris Trihinas** 

Laboratory for

Internet Computing





#### Conclusions

- Edge-mining on IoT devices is both resource and energy intensive
- Big data streaming engines struggle to cope as the volume and velocity of IoT-generated data keep increasing

#### The AdaM Framework

- Adapts the monitoring intensity based on current metric evolution and variability
- Reduces processing, network traffic and energy consumption on IoT devices and the IoT network
- Achieves a balance between efficiency and accuracy









### Acknowledgements





co-funded by the European Commission

**Demetris Trihinas** 









Laboratory for Internet Computing Department of Computer Science University of Cyprus <u>http://linc.ucy.ac.cy</u>