

A. Papadopoulos, G. Pallis, M. D. Dikaiakos

Identifying Clusters with Attribute Homogeneity and Similar Connectivity in Information Networks

IEEE/WIC/ACM International Conference on Web Intelligence Nov. 17-20, 2013 Atlanta, GA

USA

Andreas Papadopoulos - [WI 2013]

http://linc.ucy.ac.cy/

The Real World: Information Networks

Model such Information Networks as

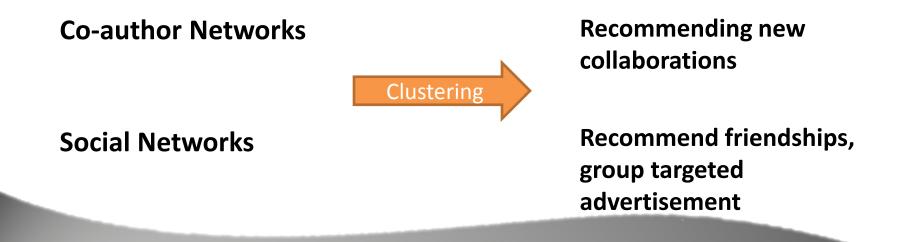
attributed multi-graphs

An Online Social Network

Andreas Papadopoulos - [WI 2013]

http://linc.ucy.ac.cy/

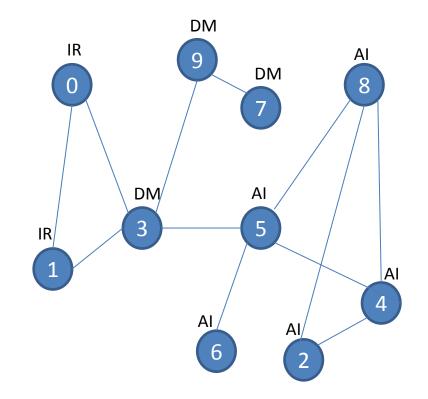
2



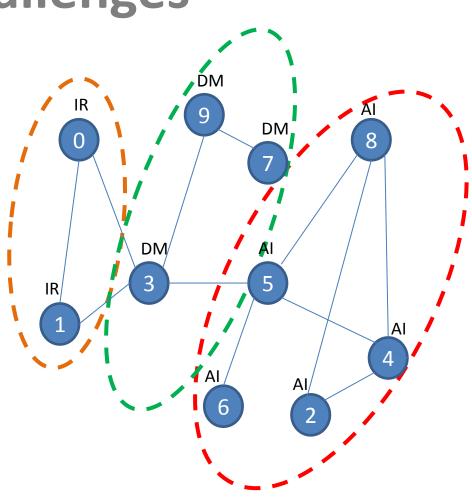
Clustering

- The process of identifying groups of related data/objects in a dataset/information network
- Why? Discover hidden knowledge!

Network

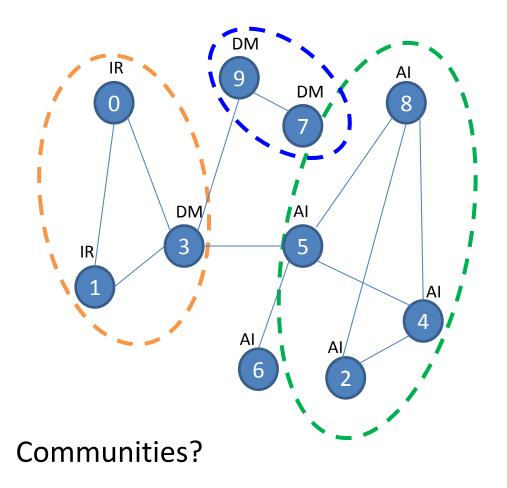

Applications

- A vertex may belong to more than one cluster
 - Fuzzy clustering
- Cluster based on:
 - Structure
 - Attributes



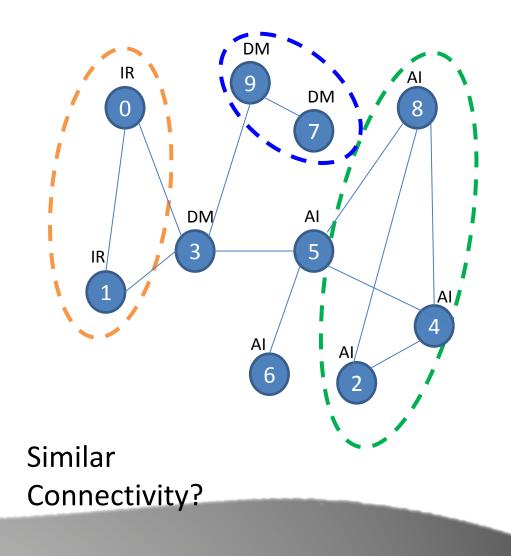
Cluster based on:

- Attributes
- Structure



Cluster based on:

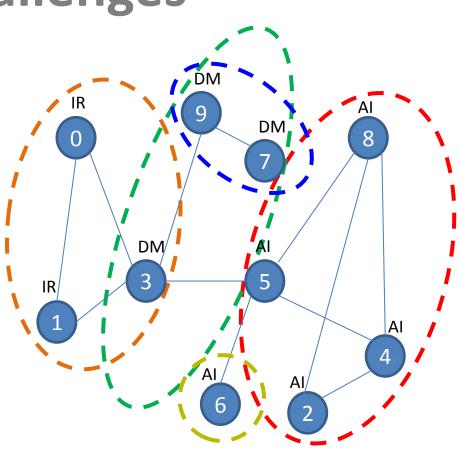
- Attributes
- Structure


Andreas Papadopoulos - [WI 2013]

Cluster based on:

- Attributes
- Structure

Andreas Papadopoulos - [WI 2013]


7

Cluster based on:

- Structure
- Attributes

- How to balance the attribute and structural properties of the vertices?
- How to identify which link type is more important?
 - A request to join a political group is more important than sharing a funny video
- How to identify which attribute is more important?
 - The attribute political views of a person is clearly more important than its name or gender

Related Work

Distance Based

SA-Cluster (ACM TKDD 2011)

- Graph augmentation with attributes and random walks
- Different attributes importance

PICS (SIAM SDM 2012)

- MDL Compression
- Similar connectivity
- Parameter Free

Model Based

• BAGC (SIGMOD 2012)

- Bayesian Inference Model
- Directed graphs
- GenClus (VLDB 2012)
 - EM algorithm
 - Multi-graphs
 - Different link types importance

HASCOP

HASCOP

Objective Function Similar Connectivity Attribute Coherence Weight Adjustment Mechanism Clustering Process

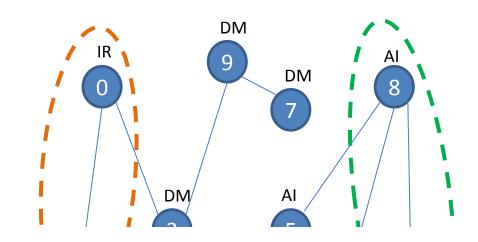
http://linc.ucy.ac.cy/

HASCOP

Assigns vertices in the same cluster so as to exhibit **both similar connectivity** and **attribute coherence**

Given function s(v_i, c_j) the clustering objective function is:

1 7 7 1

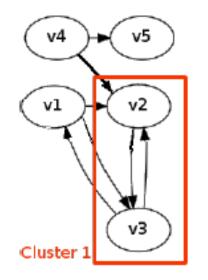

$$O(\Theta, \vec{\omega_t}, \vec{w_\alpha}) = \sum_{i=1}^{|V|} \sum_{j=1}^k \Theta_{i,j} \cdot s(v_i, c_j, \vec{\omega_t}, \vec{w_a})$$

Similar Connectivity

 Two vertices v_i, v_j have similar connectivity pattern if S(v_i) and S(v_i) highly

Laboratory for Internet Computing

Similar Connectivity represents how similar two vertices are based on their <u>outgoing</u> links


14

 Similar Connectivity

 L^0 v_1 v_2 v_3 v_4 v_5
 c_1 1
 1
 1
 0
 0

v_1	1	1	1	0	0
v_2	0	1	1	0	0
v_3	1	1	1	0	0
v_4	0	1	0	1	1
v_5	0	0	0	0	1

 $link_sim(v_1, c_1) = 1$

 $link_sim(v_5, c_1) = \frac{1}{3}$

(a) Example graph

(b) Cluster c_1 properties and adjacency matrix.

(c) Similar Connectivity

$$link_sim(v_i,c_j) = rac{-}{1+\sqrt{\sum\limits_{x=1}^{|V|} \left(L_{i,x}-\mathcal{C}_{j,x}^{links}
ight)}}$$

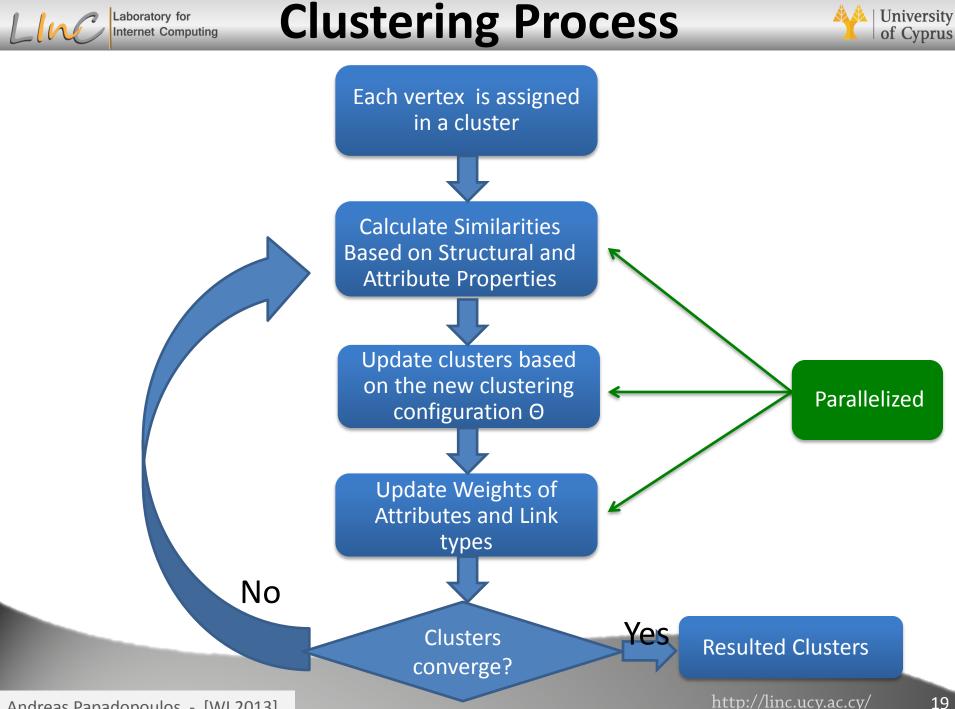
Attribute Coherence

- Weighted Euclidean distance
- It is close to one if the attribute vector of v_i is very close to the attribute centroid of c_i

$$attr_sim(v_i, c_j, \vec{w_{\alpha}}) = \frac{1}{1 + \sqrt{\sum_{l=1}^{p} w_{\alpha_l} \cdot \left(A_{i,l} - \mathcal{C}_{j,l}^{attr}\right)^2}}$$

HASCOP: Approach

 A vertex has high similarity with a cluster if both their similar connectivity and attribute coherence are high.


$$s(c_j, v_i, \vec{w_a}) = link_sim(v_i, c_j) \cdot attr_sim(v_i, c_j, \vec{w_\alpha})$$

Weight Adjustment

- Voting mechanism
- The weights are adjusted towards the direction of increasing the clustering objective function:
 - If vertices in the same cluster are connected by link-type A then the weight of link-type A is increased
 - If vertices in the same cluster share the same value for an attribute X then the weight of attribute X is increased

Andreas Papadopoulos - [WI 2013]

http://linc.ucy.ac.cy/

Evaluation

Datasets Evaluation Measures Evaluations

Andreas Papadopoulos - [WI 2013]

http://linc.ucy.ac.cy/

Datasets

GoogleSP-23: Google Software Packages

- Built from software files installed on Cloud
- Software files are **not** densely connected components

- Vertex: software file
- Attributes:
 - File Size
 - File Type
 - Last Access Time
 - Last Content Modified Time
 - Time of the most recent metadata change
- Link-types:
 - File name similarities
 - File path similarities

Datasets

DBLP: Bibliography Network

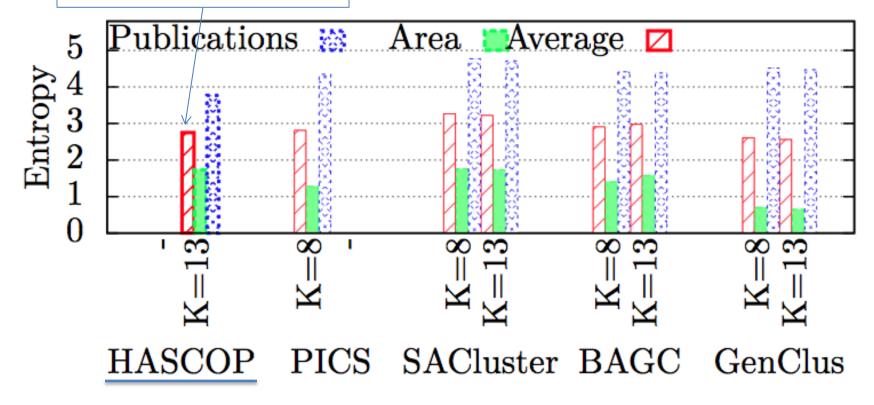
- Vertex: author
- Attributes:
 - Number of publications
 - Research area
- Link-types:
 - Co-author relationship

Dataset	DBLP-1000	GoogleSP-23	
Nodes	1000	1297	
Edges	17128	24153	
Attributes	2	5	
Link Types	1	2	
Type of Graph	Undirected	Undirected	

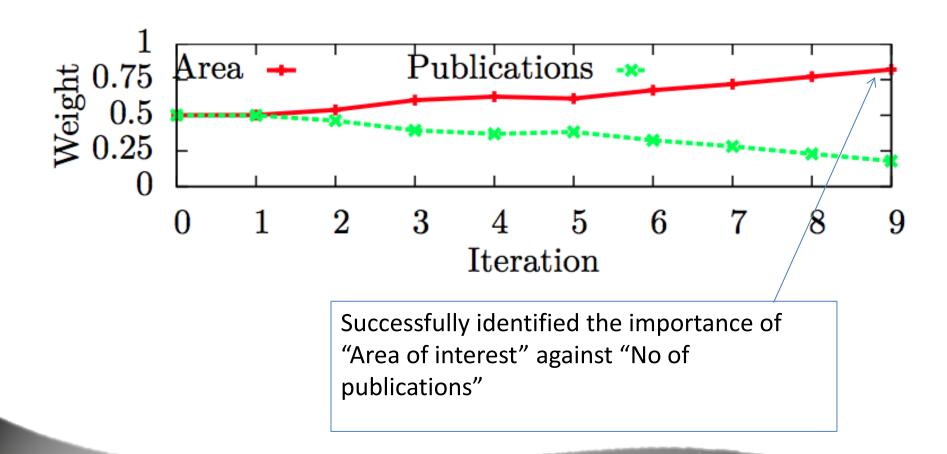
Evaluation Measures

Entropy

Laboratory for


- Attribute properties
- Close to zero for attribute cohesive clusters
- For GoogleSP-23 dataset we measure:
 - The percentage of clusters overlapping with a software package
 - The percentage of software packages that were actually identified

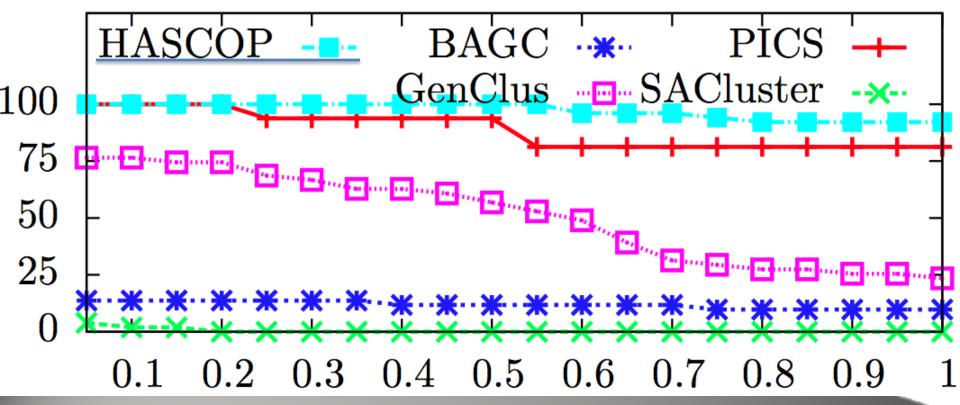
Evaluation – DBLP-1000


Very close to the lowest average entropy

Evaluation – DBLP-1000

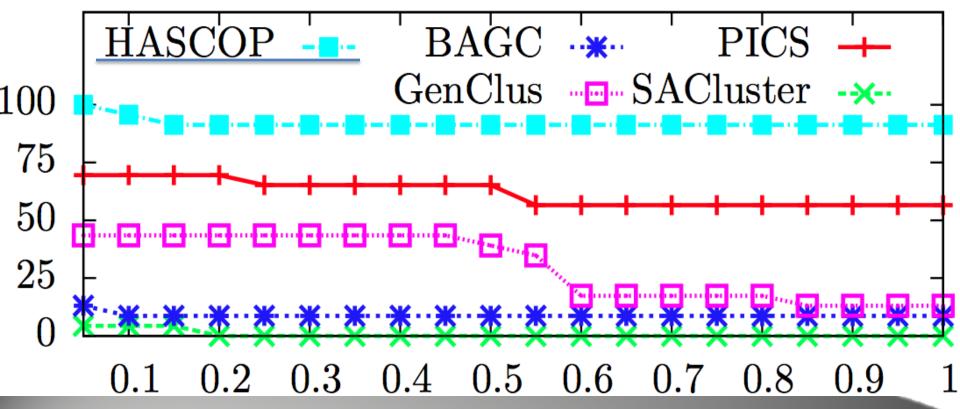
Andreas Papadopoulos - [WI 2013]

Evaluation – GoogleSP-23


- Comparison to the "ground truth"
- Must identify the softwarc ۲ BAGC PICS HASCOP \times packages GenClus \square SACluster \square Optimal 10 Entropy 8 6 HASCOP is closest to the ۲ 4 "optimal" entropy $\mathbf{2}$ 0

Evaluation – GoogleSP-23

- HASCOP found 51 clusters
- More than 80% of returned clusters by HASCOP and PICS are consisted of files from the same software packages



Evaluation – GoogleSP-23

- Almost all clusters (>90%) returned by HASCOP have full overlap with a software package
- Almost all (**21 of 23**) software packages have been identified

Conclusions

Conclusions Future Work

Andreas Papadopoulos - [WI 2013]

http://linc.ucy.ac.cy/

Conclusions

- HASCOP succeeded in returning clusters useful to many applications studying such information networks
 - Correctly identified software packages installed on a Cloud infrastructure
- Experiments confirmed that HASCOP finds clusters characterized by attribute homogeneity
- Similar Connectivity is important

Future Work

- Integrate into MinerSoft¹ (a software file search engine)
- Extend HASCOP to handle:
 - Weighted multi-graphs
 - Heterogeneous information networks
 - Deploy to a large scale Hadoop cluster

1: Minersoft is available at: http://euclid.grid.ucy.ac.cy:1997/MinerSoft/SimpSearch

A. Papadopoulos, G. Pallis, M. D. Dikaiakos

{ andpapad, gpallis, mdd } @ cs.ucy.ac.cy

Identifying Clusters with Attribute Homogeneity and Similar Connectivity in Information Networks

Thank You!

Laboratory for Internet Computing Department of Computer Science University of Cyprus http://linc.ucy.ac.cy

References

[1] L. Akoglu, H. Tong, B. Meeder, and C. Faloutsos. Pics: Parameter-free identification of cohesive subgroups in large attributed graphs. In *Proceedings of the 12th SIAM International Conference on Data Mining, SDM 2012,* Anaheim, CA, April 2012.

[2] H. Cheng, Y. Zhou, and J. X. Yu. Clustering large attributed graphs: A balance between structural and attribute similarities. *ACM Trans. Knowl. Discov. Data*, 5(2):12:1–12:33, Feb. 2011.

[3] I. Choi, B. Moon, and H.-J. Kim. A clustering method based on path similarities of xml data. *Data Knowl. Eng.*, 60(2):361–376, Feb. 2007.

[4] M. D. Dikaiakos, A. Katsifodimos, and G. Pallis. Minersoft: Software retrieval in grid and cloud computing infrastructures. *ACM Trans. Internet Technol.*, 12(1):2:1–2:34, July 2012.

[5] S. Jenkins and S. Kirk. Software architecture graphs as complex networks: A novel partitioning scheme to measure stability and evolution. *Information Sciences*, 177(12):2587 – 2601, 2007.

References

[6] S. E. Schaeffer. Graph clustering. *Computer Science Review*, 1(1):27 – 64, 2007.

[7] Y. Sun, C. C. Aggarwal, and J. Han. Relation strength-aware clustering of heterogeneous information networks with incomplete attributes. *Proc. VLDB Endow.*, 5(5):394–405, Jan. 2012.

[8] Z. Xu, Y. Ke, Y. Wang, H. Cheng, and J. Cheng. A model-based approach to attributed graph clustering. In *Proceedings of the 2012 international conference on Management of Data*, SIGMOD '12, pages 505–516, New York, NY, USA, 2012. ACM.

[9] X. Zheng, D. Zeng, H. Li, and F. Wang. Analyzing open-source software systems as complex networks. *Physica A: Statistical Mechanics and its Applications*, 387(24):6190–6200, 2008.

[10] Y. Zhou, H. Cheng, and J. Yu. Clustering large attributed graphs: An efficient incremental approach. In *Data Mining (ICDM), IEEE 10th International Conference on,* pages 689–698, Dec. 2010.

[11] Y. Zhou, H. Cheng, and J. X. Yu. Graph clustering based on structural/attribute similarities. *Proc. VLDB Endow.*, 2(1):718–729, Aug. 2009.

34