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Abstract. A critical problem in building long systolic arrays lies in efficient and reliable synchronization. We 
address this problem in the context of synchronous systems by introducing probabilistic models for two alternative 
clock distribution schemes: tree and straight-line clocking. We present analytic bounds for the Probability of Failure 
and the Mean Time to Failure, and examine the trade-offs between reliability and throughput in both schemes. 
Our basic conclusion is that as the one-dimensional systolic array gets very long, tree clocking becomes more 
reliable than straight-line clocking. 

1. Introduction 

Several problems in scientific computation and signal 
processing can be solved efficiently by special-purpose 
one-dimensional systolic architectures [4], [12], [16]. 
Such solutions may have significant practical impor- 
tance if they perform and scale well for large problem 
sizes. This implies that ultimately they should comprise 
many processing elements to achieve a high degree of 
parallelism. Furthermore, some systolic pipelines have 
the property of linear speedup. For instance, the 
Lattice-Gas machine reported in [12], [15] which 
simulates lattice models for fluid-flow, can achieve 
throughput proportional to the number of processors 
in its pipeline. It appears therefore that some future 
special-purpose machines will be built as very long 
systolic arrays of fine-grained components. 

One of the limiting factors in building long pipelines 
is the difficulty in achieving proper and reliable syn- 
chronization [5], [ 10], [11 ]. In this paper we investigate 
clock synchronization failures in such systems, in terms 
of their length and parameters that characterize clock- 
ing circuitry, such as delays in buffers and wires, and 
variance in buffer response time. Since the one-dimen- 
sional pipeline is the simplest topology for inter- 
processor communication, our results also provide 
some insight into the problem of synchronizing large 
parallel systems in general. 

First, we concentrate on the case where the board- 
level clock distribution network is implemented as a 
regular f-ary tree (tree clocking) [6] and analyze the 
effect of clock skew on system performance and 
reliability using a probabilistic model for clock skew. 

As in [13] the basic assumption is that the delays add- 
ed to the clock signal by the elements of the clock 
distribution tree (buffers, wires), are independent, iden- 
tically distributed normal random variables. Given this 
probability distribution and the topology of the clock- 
ing network, we analyze parameters such as the Prob- 
ability of Clock Synchronization Failure and the Mean 
7~me to Failure, and obtain asymptotic bounds on them. 

In addition to tree clocking, straight-line clocking 
is addressed. In this scheme the clock is propagated 
alongside the pipeline, in parallel with the data-flow. 
In [5] it is suggested that this scheme is effective 
because skew between adjacent processing elements 
(PEs) is bounded, and building or extending such a 
distribution network is fairly easy. In that case, we focus 
on clock synchronization failures due to the lack of 
uniformity of clocking buffers in passing rising and fall- 
ing edges. For instance, if the buffers of the clock 
distribution network respond more quickly to falling 
edges than rising edges, the clock pulses will tend to 
become shorter and some of them may eventually be 
lost. Clearly, lost pulses create clock synchronization 
failures. Again, we use a probabilistic approach and 
derive asymptotic results for the probability of Clock 
Synchronization Failure and the Mean Time to Failure. 

2. Tree Clocking 

2.1. Basic assumptions 

We examine first the clocking of long systolic pipelines 
where the clock is distributed to pipeline stages (PEs) 
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via a symmetric reguiarf-ary CLOCK tree. Nodes and 
edges in the CLOCK tree correspond to buffers and 
wires in the clock distribution network respectively, and 
the root of CLOCK corresponds to the clock source. 
The clock source has the responsibility to drive the en- 
tire CLOCK tree and wait for a clock pulse to arrive 
at all destinations before sending the next pulse (equipo- 
tential clocking). A one-phase clocking scheme is 
adopted. 

The pipeline stages are attached to the leaves of the 
CLOCK tree. Their interconnection is serial, i.e., each 
of them receives data from its predecessor and sends 
data to its successor, as shown in figure 1. Each PE 
is formed by two sub-cells (figure 2): CL which is a 
combinational circuit, and register R which is an edge- 
triggered flip-flop. The following time parameters are 
associated with these [10]: cell computation delay tsz, 
namely the time needed for CL to complete a computa- 
tion and settle its output to some valid result; cell prop- 
agation delay tpl which corresponds to the minimum 
time for CL's output to change when its input changes; 
register settling time tar (similar definition for tst) and 
register propagation time tpr ; and finally, propagation 
delay time tpi due to the interconnection between com- 
municating cells. T denotes the clock period of the 
system. 

CKTree 

PEs 

Fig, 1. Tree clocking scheme. 
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Fig. 2. Pipeline Stages. 

We are interested only in clock skew between adja- 
cent stages of the pipeline because the data transfer oc- 
curs only between contiguous PEs. Let the node j in 
CLOCK be the closest common ancestor of leaves i 
and i + 1, and let tj be the departure time of a clock 
edge from j. If the arrival times of that clock edge at 
PEs i and i + 1 are ti and ti+l respectively, the clock 
skew between PEs i and i + 1 equals ti+l - ti, and 
is attributed to two causes: 

The temporal fluctuations in clock-buffer delays, 
called run-time skew and denoted by/sr; 

The variations in delay characteristics of different 
components (because of different chip characteristics), 
called buiM-time skew and denoted by 6/b. 

In other words, the cumulative clock skew can be 
expressed as follows: 

~r + t~b = t i+l  _ ti (1)  

where 6 r, 6/b may be either nonnegative or negative. 
Build-time skew remains constant after selecting the 
clock buffers off the shelf, and building the clock 
distsribution network. In real designs, the clock 
distribution network is tuned so as to minimize the ef- 
fects of build-time skew. The tuning procedure usually 
involves the adjustment of delay elements, buffers, and 
wires and can guarantee a negligible build-time clock 
skew [17], [20]. 

2.2.  Model  

For the calculation of run-time clock skew we assume 
that CLOCK follows the metric-free tree model [15]. 
In this model, all buffers (nodes) are identical and add 
to the clock signal a delay modeled by the same prob- 
ability distribution. Wires (edges) which propagate the 
clock have equal lengths. Therefore, every wire has the 
same probability distribution for delay, which can be 
lumped with the delay of the buffer that follows it. The 
metric-free tree presents a reasonable abstraction for 
distribution networks which provide a clock signal to 
chips on a number of boards in a system. 

Asst~er~oN 2.1. The delay inserted in the clock signal 
by buffer k, and the wire leading to it, is considered 
to be a random deviate Zk, distributed normally with 
zero mean and finite variance, i.e., rk ~ N(O, o2), and 
independent from clock edge to clock edge. 

Actually, each buffer adds a positive delay to the clock 
signal, and therefore there is a nonzero mean for the 
delay distribution. If we consider the distinct paths that 
route the clock to two adjacent PEs, the difference of 
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their cumulative means is equal to the build-t ime skew 
between them. Nevertheless, because of CLOCK tree 
symmetry, our run-t ime s kew  analysis is independent 
of the build-time skew value, and may proceed as if 
the cumulative means along the two distinct paths 
cancel out (i.e., as if the build-time skew were zero). 
Therefore the mean values of rk'S may be considered 
zero. 

The following two conditions must be satisfied at 
each pipeline stage in order to avoid clock synchroniza- 
tion failures: 

First, in the case where the clock signal arrives 
earlier at PE i + 1 than at PE i (negative clock skew), 
and the clock period is not large enough, the data com- 
puted in PE i may arrive at PE i + 1 after the arrival 
of the next pulse's leading edge (see figure 3). In that 

I I I I 

PEi+I 

< t c > 

? l 
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-[6rl 

< T+d i+l > 

Fig. 3. Type-1 Failure: the output ofPE i appears too late to be latched 
by PE i+1. 

case, proper synchronization is not guaranteed and data 
may be lost [10]. Therefore, the following condition 
must be satisfied: 

T + di+ 1 > t c -  (a r + (3bi ) c* di+ 1 + af > t c -  ~)b i - T 
(2) 

where tc = tsr + tpi + tsl (total computation delay). 
The random variable dt (clock j i t ter  at PE l) is the dif- 
ference in rising clock edge arrival times at PE I that 
compensates for the fact that two successive rising clock 
edges arrive with different delays at the same PE l. Al- 
though the two successive pulses have been emitted by 
the central clock source within time T, they arrive at 
PE I with a time difference of T + EkeKs,~(r'k -- rk) 
between each other. The random variable rk corres- 
ponds to the delay inserted in one clock pulse by some 
buffer in the path from the clock source to PE l, Z'k cor- 
responds to the delay inserted in the next clock pulse by 
the same buffer k, and Kji denotes the set of CLOCK 
nodes (buffers) along the path from node j to node i, 
not including j ,  and S corresponds to the clock source 
(root of CLOCK). Thus, for every PE 1, d l equals: 

d l=  ~ ( r ' k - r D ,  (3) 
keKs, z 

In the following sections, we will lump 6/b with 6, 
and pursue our analysis as if 6f were the only cause 
of clock failures. As we mentioned previously, 6~ 
remains constant after building the clock distribution 
network. In fact, for every type of clocking circuitry 
components there is a known range of delay character- 
istics [19]. Using those data, we can estimate the worst 
case value of build-time skew. We denote it as 6b, 
where 6b _> l aPI u (6~ takes also negative values), and 
concentrate on the following worst  case  restriction: 

di+l + 6r > tc + 6b _ T r 6i > ~ - T (4) 

where 3i = di+l + 6r, and the factor t b = t c + 6b ab- 
sorbs the worst-case effects of build-time skew. At the 
end, we will estimate the effects of improper tuning, 
and build-time skew on system performance for the 
range of values of T that guarantee very high reliabil- 
ity against run-t ime failures. Failures due to violations 
of (4), will be referred as type-1 fai lures .  

The second type of synchronization failure (type-2 
fa i lure)  occurs whenever a rising clock edge arrives 
later at PE i + 1 than at PE i and the propagation time 
between i and i + 1 is very small. In that case the data 
released by PE i at clock cycle k may be stored into 
register Ri+ 1 at the same cycle, and not at the next one, 
k + 1. The data to be latched into Ri+ 1 on cycle k, is 
lost (figure 4). The following inequality prevents this 
type of failure: 

~f q- t3 b < tpr -k- tpi + tpl = tp (5) 

where tp is the total propagation delay. It is reasonable 
to assume that tst ~> tpl and thus t c >> tp. Relation (5) 
does not involve the clock period T. Consequently, if 
(5) is not satisfied, clock synchronization failure can- 
not be prevented even if the clock frequency is reduced 

: p :  

i 

a7 + a~ 
Fig. 4. Type-2 Failure: the input to PE i+1 changes before it latches 
its proper input. 
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substantially. However, we can avoid synchronization 
failure by increasing the interconnection delay tpi and 
satisfying (5) with a very high probability. In the follow- 
ing sections we focus our discussion to type-1 failures, 
in order to examine the relation between reliability and 
clock speed in very long pipelines. 

2.3. Analysis  

We consider the clock skew fir between PEs i and i + 
1. Let j be their closest common ancestor in the 
CLOCK tree, tj be the departure time of some clock 
edge from node j,  and ti and ti+a be the arrival times 
of the aforementioned clock edge at nodes i and i + 1 
respectively. As stated in the previous section, f~ 
equals ti+l - ti, or (ti+l - tj) - (t i - tj). The dif- 
ferences t i - tj, ti+ 1 - tj can be expressed in terms of 
the individual delays at tree nodes, ri: 

t i - - t j =  E rk 
kEKji 

t i+l -- fj = E 7k 
k~I~,i + 1 

where Kji is defined as in the previous paragraph. 
Thus 

fr= E 
k~/~,i+ 1 IEI~i 

From (3), (6) we can easily see that: 

(6) 

f i  = ~r -[- d i+l  = E Ttl - ~ a  zl (7) 
l~Ks, i+l l~Ks, i 

By the symmetry of CLOCK (l il = I ,i+1t), 
assumption (2.1), and the independence of the two terms 
on right-hand side of (7) we conclude that 6i is nor- 
mally distributed with zero mean and (1Ks.i+ll + 
]Ks, i] )  9 a z variance. But IKs, il + IKs, i+ 11 = 2 logfN, 
and therefore: 

f i  - N(O, 2a 2 logfN) (8) 

It is interesting to observe that regardless of where in 
the CLOCK tree the paths Ks, i and Ks, i+1 are 
separated, the variance of fi remains 202 logfN; and 
furthermore that the occurrence of type-1 failures 
depends on the delays added to two success ive  rising 
clock edges by the paths KS, i and Ks.i+ a respectively. 

Note that in [13] the estimated mean value of clock 
skew refers to the difference of the delays added to the 
same clock edge by the two paths Ks, i, and Ks, i+1. 

The probability that no type-1 failure occurs when a 
clock pulse is sent to the PEs through CLOCK, is equal 
to the probability that at each stage of the pipeline, rela- 
tion 4 holds. Let 

G ( 1 , N -  1) = P r [ r  - T <  fl . . . . .  r -- T <  3N_l] 

where N is the length of the pipeline. Introducing the 
notation 6/(m,n) to denote the set of restrictions {t~ - 
T < fm . . . . .  t b - T < fn }, we can express G(1, 
N - 1) as follows: 

G(1, N -  1) = P r  

Clearly: 

+ 1 , N - l ) ]  

GO,  N -  1) = Pr  

(R(ff~+I,N- 1)] 
G(1, N - 1) = Pr  

: N ( f  6~(1, -~ - 1), 

E N 
r - v < - l), 

tbc - T < bN/f l 

+ 1, N -  1)]  9 

Pr V(R(1, -N- 1), ( R ( f +  1, N - 1 )  1 
[_ f 

The random variables 6i involved in the set of restric- 
tions 6l (1, N / f  - 1) are independent of the ones in- 
volved in (R (N / f  + 1, N - 1). Therefore: 

E N N 1 Pr 6t(1, ~ - 1), 6t( 7 + 1, N + 1) = 

[ I 1 P r  6 t ( 1 , ? -  1) " P r  [~ f 1, N -  1) 

and: 
F 

G(1, N -  1) = Pr  | r  T <  6N/f I 
i_ 

6t (1, 7 -  1),CR( + 1, N -  1)  9 

G(1, f - 1 ) -  G ( f  + 1, N - 1 )  1 (9) 

The first term of the product in Equation (9) is diffi- 
cult to specify analytically, so we will find a lower 
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bound for it. To do this, we need the following lemmas 
(rigorous proofs given in [2]): 

LEMMA 2.1. [15] For any random variable y, any a, 3, 
and any random event C, it is true that: 

Pr[a < y [ C, 3 < Y] > Pr[a < y ] C](10) 

LEMMA 2.2. [15] Let yi, i = 1, 2 . . . . .  Nbe indepen- 
dent identically distributed (iid) random variables, let 
rj, j = 1, 2, . . . ,  n be sets of yi's (not necessarily dis- 
joint) and let 

t j =  E Y l ,  j = 1,2,  . . . , n  
lerj 

Then for each j ~ {1, 2, . . . ,  n} it is true that: 

Pr[c~ < tj [ a < t 1 . . . . .  Ot < t j _ l ,  Ot < tj+ 1 . . . . .  o~ < tn] 

>_ Pr[~ < tj] (11) 

From the definition (7), and assumption (2.1) it is 
clear that ~i is distributed as the sum of the iid ran- 
dom variables ri, r/: ~l~Ks,,+, r[ + r,l~Ks,, r i. Therefore, 
lemma 2.2 can be applied to yield the following bound: 

Pr ~ - T <  8m/fl 6l(1, 7 - 1), 61 + 1, N -  1) 

>- "r  [ ~ -  T <  8N/f]" (12) 

Denoting the probability Pr[~ - T < 8i] as gi we 
get: 1 

N (9), (12) = G(1, N -1)  _> gN/f" G(1, 7 - 1)  9 
J 

G ( f  + 1, N - 1) (13) 

I f f  = 2, from the symmetry of CLOCK tree we have 
G(1, N/2 - 1) = G(N/2 + 1, N - 1). Therefore: 

G(1, N -  1) > gN/2"G(1, N -- 1) 2 

W h e n f  > 3: 

G + 1, N -  1) ~ g2N/f" G + 1 , 7  - 1)" 

G 2 N +  1, N -  1) (14) 
( f  

From the symmetry of CLOCK tree, we can easily see 
that: 

N (~ 2N 
G(1, ~ - 1) = G + 1, 7 - 1) and gN/f = g2N/f 

Therefore, 

N (13), (14) = G(1, N -1)  _> g2N/f- G(1, ~ - 1 )  2 .  

G 2 N +  1, m -  1) (15) 
( f  

By expanding the last term of the previous product, we 
get the following equation which holds Yf: 

G(1, N -  1) _> gfN-)}" G ( 1 , f -  1) f (16) 

Furthermore: 

G(1, f - 1 )  >- gN/p'Pr [61(1, f z - 1 ) 6 1 ~  + l, f - 1 )  ] 

The random variables 8i that appear in restrictions 
6t (1, N/ f  z - 1), and 61 (N/f z + 1, N/ f  - 1) have terms 
in common. Nevertheless, it is true that: 

Pr 6l(1, f i  - 1), 61 + 1, 7 - 1) = 

Pr [ 6 1 ( 1 , ? - 1 ) 1  "Pr N N 

We are going to show this fact, using a simple ex- 
ample wi th f  = 2, and N = 8 (see figure 5). Clearly: 

1 

81 
Fig. 5. Clock skew in a binary tree. 
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/51 = (r[3 + r~ + r~) - (r13 + r 9 + r 0  = 

(r[3 - r13) + (r~ + r~ - r 9 - rl) = r + r '  

and: 

/53 = (r~3 + r~o + r~) - (r13 + rio + r3) = 

(r~3 - r13 ) + (r~o + r~ - rio - r3) = r + r" 

The terms r" r" are independent random variables; r 
is the random variable which represents the common 
term of/51 and 153. We can easily see that: 

Pr[t~ - T <  r + r' , tbc -- T <  r + r"] = 

Pr[tbc -- T < r + r']  9 Pr[tbc -- T < r + r"] 

Using the previous remark, we get: 

N 1)f > ,~ ( f -1 ) f .  G(1, N 1) ~ G ( 1 , ~  - - 6H/f= ~ -  

G(1, f2 _ 1)N/f~ >_ gfg-1)H/f = . G(1, f -  1) N/f > 

i f -  I)N/~ . g[ -  1)N/I 

Thus: 

G(1, N -  1) _> (gN/f" g ~  "g~/f . . . .  g~/f=" gAlr 
(17) 

where 

gi = Pr[t~ - T < ~i] = 1 - Pr[/5 i <_ t~ - T] = 

gi = 1 -- r ~ 2 a  2 1ogf N_) = r ~ 2 a  z logfN_J 

O(x) equals 

f 1 e -x2/2 dx. 
~ 2  ~ - ~  

The value of gi is not influenced by i, so for the sake 
of  simplicity we get rid of the indices, and use instead: 

g = cb ( ( T -  ~ ) / ~ / 2 a E l o g f N  1 (18) 

Relations (17), (18) give: 

G(1, N -  1) > (gl+f+f2++N/f) f-1 (19) 

or equivalently: 

G(1, N -  1) > gN-1 (20) 

Therefore, we can state the following theorem: 

T~EOPmM 2.1. Consider a very long one-dimensional 
systolic array clocked by a central clock source with 

fixed frequency l/T, via a clock distribution network 
compatible with the metric-free model. The probability 
that clock skew does not cause synchronization failure 
by violating conditions (4) within a time period between 
two successive pulses, satisfies: 

_ 1 
We define the normalized margin r: 

r-t  
r - ( 2 2 )  

f f  

and use the following property to approximate the value 
of the right-hand side of  relation (21), [3], [1]: 

1 " - ' e l  _u2/2 (23) Vu ___ 0, 1 - ~(u)  < 2 x / ~  u 

The combination of (22), (21) and (23) gives: 

I 1 1N~fNe_r2/41ogfN ~ N-1 
G ( 1 , N - 1 ) >  1 -  V~ r 

(24) 

This relation provides some insight into the tradeoff 
between clock period and reliability. For known values 
of t ff and ~ which depend on the circuit implementa- 
tion, we can plot the lower bound for the probability 
of type-1 success, or the upper bound for the probability 
of type-1 failure when two clock pulses are sent to the 
pipeline 9 Figure 6 shows the lower bound for the prob- 
ability of success, G(1, N - 1), as a function of the 
clock period in a 2000-stage pipeline with ~r = 1, and 
t~ = 20. The upper bound for the probability of 
failure when N = 1000, and f = 2 is plotted in figure 
7 as a function of r. Figure 8 focusses on the more inter- 
esting area of figure's 7 plot, namely on the range of 

i.- 

0.8- 

0.6" 

0.4- 

0.2- 

2 0 .  

F • .  6 Lower bound for the probability of typed success (N = 2000, 
tc= 20, a = 1, f =  2). 
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p r [ F a i l u r e l  

i ,  

0 . 6 -  

0 , 2  

Fig. 7. Upper bound for the probability of type-1 failure (N = 1000, 
f =  2). 

Log [Pr  [ r  a i l u ~ e ]  l 

3S0 .  40~ .  

- 5 0 . -  

Fig 8. Logarithm of the upper bound for the probability of type-1 
failure (f = 2). 

values o f t  where the probability of failure gets very close 
to zero. It contains three curves in base-10 logarithmic 
scale: one for N = 103 (lower curve), one for N = 105, 
and one for N = 106. From the shape of these plots, it 
is obvious that there is a tight range of clock period 
values where the guaranteed reliability (i.e., the lower 
bound of probability of success) changes sharply from 
low to very high. The design challenge is to satisfy two 
conflicting goals: first, the achievement of an acceptable 
reliability level, which requires the increase of T. Sec- 
ond, the maximization of  pipeline throughput and PE 
utilization, attained by making T as close as possible 
tOtc b. 

We notice that if  we demand that the lower bound 
in (24) be equal to 1 - e, where e is a very small 
positive real number, the probability of success would 
be very close to one. Consequently, by letting: 

1 x/logf N .  e-'2/4 log I = 1 - e 
1 - ~ f ~  r 

we can estimate the asymptotic behavior for r as N -~ 
oo, guaranteeing the very high reliability of  1 - e from 
the standpoint of synchronization failures. For large N, 
the previous equality becomes: 

Na/logf N e_r2/41ogfN 

Assuming that: 

2 
r = r (N)  = x f i~g fe ' lOg fN  (25) 

we get: e = 1/(2af~-~  9 x/MgfN) which tends to zero as 
N ~ oo. Therefore, the asymptotic growth of  T(N) 
described in (25), is sufficient to guarantee high 
reliability against clock synchronization failures in very 
long systolic pipelines. Combining the definition of 7 
in (22), and equation (25) we get: 

2 .  logf N (26) T = t ~ +  lox/~fe 

From this, we conclude that as the length of the one- 
dimensional systolic array increases, an increase in the 
clock period proportional to logf N is sufficient to 
guarantee negligible failure probability. 

In the case where CLOCK has not been tuned, we 
assume that for two random off-the-self buffers of the 
same type, the difference in their delay times ranges 
between -Ab and Ab. The maximum value that 6 b can 
take, equals 2A b logy N. Subtituting t~ by 6b + tc in 
(26), we get: 

2 T =  2 . A  b l o g f N +  tc + ~ l o g / N  = 

2 1 =  t c + ( 2 . A b  + ~ ) ' l o g f N  
"r 

(27) 

Therefore, we conclude that build-time skew does not 
affect the pipeline throughput asymptotically. In prac- 
tice however, certain values of  the constant A b in (27) 
might require substantially higher values of Tto guar- 
antee highly reliable functioning of the systolic array. 

2.4. Mean time to failure 

The previous discussion about reliability does not ad- 
dress the temporal behavior of  the pipeline. Instead, 
it deals with the problem of potential synchronization 
failures when one clock pulse is sent through CLOCK 
towards the PEs, and attempts to satisfy the inequality 
(4). A temporal approach would try to estimate how 
many cycles a pipeline would run without failures 
(Mean Time to Failure), under the presence of clock 
skew. Let F be the random variable corresponding to 
the time when type-1 failure occurs, and F(t) be the 
probability that clock synchronization failure does not 
occur before the tth clock pulse, i.e.: 
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F(t)  = Pr[F > t] = Pr[(Ra(1, N - 1), (R2(1, N - 1), 

. . . .  (R t(1, N - 1)] 

where 6/l(m, n) is the set of inequalities {t~ - T < 
6m ..... tc b - T < 6~ }, for the l-th clock pulse. Using 
Bayes' rule, and lemma (2.2) we can easily see that: 

Pr[(Rl(1, N - 1), (R2(1, N - 1) . . . . .  ~ t (1 ,  N - 1)] 
_> 

Consequently: 

F(t)  > g t - ( N- 1 )  (28) 

Using the property (18) that for any nonnegative ran- 
dom variable X, 

5 E[X] = Pr[X >_ x] "dx  

we can easily estimate a lower bound for F( t) ' s  mean 
value, namely for the mean time to type-1 failure 
(MTF): 

fo MTF = F(t)   9 dt = 

MTF > [~g t (N-1 ) .  dt ~ (29) 
dO 

-1  MTF > 
(N - 1)  9 In g 

The lower bound in Equation (29) is positive because 
g is positive and less than 1. Substitution of Equation 
(24) into (29), yields the following theorem: 

THEOREM 2.2. In a very long one-dimensional systolic 
array of length N, clocked by a central clock source 
with frequency l/T, via a clock distribution network 
compatible with the metric-free tree model, the Mean 
Time to Failure satisifies: 

MTF > 

- 1  
(30) 

(N - 1)" ln(1 - x/~gfN,  e-rZ/41~176 7") 

Figure 9 contains a plot of the base-10 logarithm of the 
MTF, as a function of~- for three pipelines with 103, 10 s, 
106 PEs (left, middle, and right curves respectively). 
For a pipeline with 106 PEs, the mean time to failure 
is greater than 1030 for 7" > 80. 

3. Straight-Line Clocking 

3.1. Basic Assumptions 

Straight-line (pipelined) clocking represents an alterna- 
tive to equipotential clocking for synchronous systems. 

la0.- 
120.. 

B0. 
s0 .[ 
40. 0~ 

~=Z0-5 Z0. ~=10̂ 3 

4O 60 SO 00 

Fig. 9. Logarithm of the lower bound for the mean time to failure 
type-1 (f = 2). 

Under the straight-line scheme, the clock distribution 
network is composed of a series of buffers (repeaters) 
which carry successive pulses from the global clock 
source, so that several clock pulses are simultaneously 
active in the system (figure 1(3). Straight-line clocking 
represents a simple, and easily expandable architectural 
design where clock and data are transferred along the 
pipeline in parallel. As Fisher and Kung point out [5], 
straight-line clocking is most applicable in cases where 
PE speeds are very high, and interconnect is long and 
has high impedance. In that case, equipotential clock- 
ing would impose a slow clock, and result in PE under- 
utilization. In contrast, a pipelined clocking scheme 
with short interconnection paths would run at speeds 
independent of the pipeline's length and close to the 
PE switching speed. Tuning of  interconnection delays 
in the straight-line clock distribution network is crucial 
so as to guarantee the arrival of  data in one processor 
before the arrival of the corresponding clock pulse. 

Buffer~ 

Fig. 10. Straight-line clocking scheme. 

A potential cause of clock synchronization failure 
is the lack of uniformity in repeaters when passing fall- 
ing and rising clock edges. Worst case analysis has 
shown that differences in the delay between leading and 

falling edges may cause the disappearance of  clock 
pulses and thus synchronization failure [81, [9]. Thus, 
the failure mode of straight-line clocking is different 
from that of tree clocking. 

Our principal assumption is that whenever a pulse 
of  width w goes through a buffer, its width is changed 
and becomes w + e, where e is a normal random 
variable with zero mean and finite variance. We model 
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the pulse width as a random process, where the state of 
the process corresponds pulse width, and the discrete 
time corresponds to the buffer stage where the pulse 
is currently in. I f  w ever reaches zero, the Pulse disap- 
pears and the process is absorbed. The assumption 
about the random changes (increments) e of the pulse 
width and the process absorption at zero leads us to 
a thoroughly analyzed form of random process, Brown- 
ian Mot ion  with Absorbing Barr ier  at  zero [14]. 

Our main assumptions and definitions concerning 
pipelined clocking, are: 

1. Synchronization failure happens when the width of 
a pulse becomes less or equal to some nonnegative 
value. Without loss of generality, we assume that this 
value equals zero. 

2. w is the width of the pulse emitted by the clock 
source and n is the number of buffers in the clock 
distribution network (which can be considered equal 
to the pipeline length N).  

3. W/, i = 1 . . . . .  n is the clock pulse width at the output 
of the ith buffer, and Xi, i = 1 , . . .  ,n is the random 
process  which models IV/(definition of X i follows). 

4. Y/, i = 0, . . . ,  n is a Brownian Motion random 
process, such that: 
Yo = Z0 = w (constant) 
v i ,  0 < i <_ n: Yi+1 - Yi = Zi+l, where Zi's are 
deviates following the Normal Distribution N(0, a 2) 
For each pair (i, j )  of buffers with i ~ j ,  the incre- 
ments Zi = Y / -  Y/-1 and Zj = Yj - Yj-1 are inde- 
pendent random variables 

5. X/, i = 0, . . . ,  n is a Brownian Motion random 
process corresponding to Yi, restricted by an ab- 
sorbing barrier at zero. Thus: 

~o :O + z l  + . . .  +z~=Y~, 
Xi = i f f  Yj > O, u O <_ j<_i 

, if  3j, with j < i such that Yj = 0 
6. D is a deviate corresponding to the number of the 

first repeater after which a clock pulse disappears. 

Note that we have chosen the mean value of the 
pulse's random increments to be zero, which means that 
we implicitly assume that repeaters are designed to re- 
spond uniformly to rising and falling edges. Failures 
occur because of the variance in the response time. 

3.2. Analys is  

We will first estimate Pr [D > j ] ,  i.e., the probability 
that a clock pulse sent to the pipeline disappears for 
the first t ime after the j t h  stage. By definition of Xi, 
i = O ,  . . . .  n: 

P r [ D  > j ]  = Pr[  min X i > 0 [ X o = w] = 
i=0  . . . . .  j 

P r [ O  > j ]  = P r [  m in  Yi > 0 ] Yo = w] 
i=0  . . . . .  j 

(31) 

Equation (31) is true because the Brownian Motion Y/ 
is identical to the Absorbing Brownian Motion Xi up 
to the point where the latter "hits the barrier." After that 
point, Xi becomes identically zero, whereas Y/may 
continue the random walk to positive or negative values. 
The following lemma presents known basic properties 
of Brownian Motion, and will be used subsequently. 

LEMMA 3.1. [14] I f  Y/is a Browning Motion random 
process, the following equations are true: 

Pr[  rain Y/ > 01 Y0 = w] = 
i = 0 , . . . , t  

Pr[  max Y/ < 2 " w  ] Y0 = w] (32) 
i = 0 , . . . , t  

Pr[  max Y/ < 2 " w l  Y0 = w] = 
i = 0 , . . . , t  

Pr[  max Y/ < w l Y0 = 0] (33) 
i = 0 , . . . , t  

Pr[  max Y/ > w l Y0 = w] = 
i = 0 , . . .  ,t 

2 " P r [ Y t  > w [  Y0 = 0] (34) 

Using (32, 33, 34, 31), and the definition of Y/'s we 
get: 

P r [ D  > j ]  = P r [  max Y/ < 2 . w [  Y0 = w] = 
i=0  . . . .  d" 

1 - Pr[  max Y/ _> w ]  Y0 = 0] = 
i = 0 , . . . d  

1 - 2 " P r [ Y j  > w ] Y0 = 01 = 

s o o  2 . e -u2/(2j~ du (35) P r [ O  > j]  = 1 - a 2x~j u 

Alternatively, P r [ D  > j ]  may be written as: 

- - W  P r [ D  > j ]  = 1 - 2 . c b  ( - - ~ j - )  ~ P r [ D  > j] = 

W 2 .   9 ( - - ~ - - )  - 1 (36) 

The following inequality then gives an analytic bound 
for probability Pr[D > j ]  [7]: 

U U U 3 
vu _> 0, _~- _> ,I,(u) - ~,(0) _> (37) 

~/27r 

and: 
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(23), (36) = - -  2w - -  > Pr[D > j] 

>_ 2w w 3 
oV'2~j 3a3~/27rj 3 

(38) 

3. 3. Reliability and Mean Time to Failure 

In order to insert the notion of  clock speed in (38), we 
note that the pulse width w is related to the clock period 
T. Assuming that the central clock source generates a 
waveform with a duty cycle 0/ = w/T, (38) becomes: 

0/1 ~  
T ~_> Pr[D > j] 

o ' x / j -  

T T 3 
0/1" a~/f 0/2" a3~ff~ (39) 

where: 

2  9 0/ 0/3 
0/1 -- ~ / ~ ,  0/2 -- 3X/2r '  

When there is one clock buffer corresponding to every 
PE, i.e., n = N, the probability that no synchronization 
failure occurs along the pipeline equals Pr[D > N], 
and is bounded as: 

T  9 > Pr[D > N] 0/1 ax/-N - 

T T 3 
>- 0/1 a~/-N ~2 a3~f~3 (40) 

Using property (23), we can also get the following 
lower bound for Pr[D > N]:  

P F [ D > N ] > _ I  _ a f f - N  [ 0/2 " T2 ] 
ff2~o~------T" exp 2a2N 

(41) 

which is useful for smaller values of N, when the right- 
hand side of (40) becomes negative. By combining (40), 
and (41) we can state the following theorem: 

THEOREM 3.1. Consider a very long one-dimensional 
systolic array of length N, clocked by a central clock 
source with frequency l/T, via a straight-line clock dis- 
tribution network. The probability that a clock pulse 
emitted at one end of the array will eventually reach 
the other end satisfies the following relation: 

T 0 / 1 " - -  > Pr[D > N] 
ax/-N 

f0/ . T T 3 > _ m a x  1 - 0 /  2 . , 

x/2~o~---T" exp 2 a W  

When N is very large (long pipelines), the lower bound 
of Pr[D > N] in relation (40) is dominated by its first 
term, and therefore the probability of  success has the 
following asymptotic behavior: 

Pr[D > N] ~ ~1" r (42) 
a~-N 

I fPr[D > N] = 3, where 3 is a given desired level 
of reliability, we can use the left-hand side of relation 
(40) to obtain: 

0/1" T >  /~ 

aff-N 

Since 13 ~ 1: 

a . 4 - N  T > - -  (43) 
0/1 

In addition to the previous inequality, the clock period 
T should always be greater than the computation time 
t c. Therefore: 

a .~4-N 
T > max c, (44) 

0/1 
J 

Whenever straight-line clocking is adopted, this pre- 
sents a necessary but not sufficient condition for the 
systolic array to function with a very high reliability. 
We therefore conclude that as N gets larger, the clock 
period should grow faster than the square root of the 
pipeline length. Otherwise, a frequent occurrence of 
clock failures is expected. It is interesting to note that 
this conclusion agrees with the heuristic argument pre- 
sented in [5]. 

In order to estimate the Mean Time to Failure, we 
use the terms F and F(t) ,  both defined in the discus- 
sion of tree clocking. The Mean Time to Failure is 
defined here as the mean number of clock pulses 
emitted by the central clock source, before the occur- 
rence of some failure, i.e., the disappearance of some 
clock pulse. We make the assumption that the passage 
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of different clock pulses from the pipelined clock 
distribution network constitute independent random 
events. Consequently: 

f ( t )  = Pr[F  > t] = (Pr[D > N]) t 

and 

fo fo M T F  = F ( t ) d t  = (Pr[D > N])tdt 

- 1  
M T F  = In Pr[D > N] (45) 

An asymptotic bound for M T F  can be readily derived 
using (42): 

- 1  
M T F  ..~ 

In (oq T/o4-N) 

which completes the proof of the following theorem: 

THEOREM 3.2. Consider a very long one-dimensional 
systolic array of length N, clocked by a central clock 
source with frequency 1/T, via a straight-line clock dis- 
tribution network. The Mean Time to Failure of  that 
pipeline, has the following asymptotic expression: 

1 MTF 1 ~ . I n N -  I n T +  l n a  - Incz, 

4. Conclusions 

Our first conclusion refers to the tree clocking scheme: 
we proved that for very long one-dimensional systolic 
arrays of length N, a growth in the clock period pro- 
portional to logfN is sufficient to guarantee very high 
reliability with regard to synchronization failure. 

The second conclusion relates to straight-line clock- 
ing: in that case we showed that a necessary  condition 
for a systolic pipeline to function with very high relia- 
bility, is that its clock period grow proportionally to 
x/-N. In both cases, the acceptable reliability levels are 
determined by corresponding estimates of the Mean 
Time to Failure. 

Given these conclusions, we can see that as the sys- 
tolic array gets very long, tree clocking is preferable 
to straight-line clocking. 

As a concrete example, figures 11 and 12 show plots 
of the clock period T for values of  pipeline length 
N = 100 to N = 1000, and N = 1000 to N = 50000 
respectively, when tc = 60, a = 1, and cz = 0.5. The 
probability of  failure in both schemes is at most 10-3~ 

In figure 11, where the pipeline length is less than 1000, 
we cannot draw any conclusions about which clocking 
scheme is better. We do know that the tree clocking 
scheme will "work"  with the required reliability if T 
is around or  above 100, but we don't know the 
failure-rate of straight-line clocking for that range of 
T's. In contrast, for longer pipelines (N >> 1000), tree 
clocking is clearly better because it guarantees at least 
the required reliability for values T and N ranging in 
the area between the solid and the dotted curves in 
figure 12, where straight-line clocking does not work, 
i.e., presents an unacceptable high rate of synchroniza- 
tion failures. 

CLOCK ' 
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TREE CLOCKING WORKS 

B~qARY TREE 

. . . . .  - - ""  STRAIGHT.LINE CLOCKING 
S ~ G H T - L I N ' E  . . .  - "  DOES NOT WORK 
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PROCE*SS~'~G TIME 

N )  

LENG~rlt 

Fig. ll. Straight-line vs tree clocking schemes: N = 100 to 1000. 
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Fig. 12. Straight-line vs tree clocking schemes: N = 1000 to 50000. 

Although tree-shaped clock distribution networks 
are substantially more reliable for synchronizing very 
long one-dimensional systolic arrays than straight-lines, 
the straight-lines still have some desirable architectural 
features: they are simple and expandable in their design 
and implementation. The failure mode of the straight- 
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l ine c locking scheme is in the d isappearance  of  c lock  
pulses. One  way to a l leviate  this p rob l em  might  be  to 
replace the buffers by one-shots  [8], which  have the 
proper ty  of  emit t ing a high pulse  o f  standard width.  
However,  one-shots  requi re  more  hardware,  and fur- 
thermore ,  a worst-case a rgument  presented  in [8] has 
shown that even in this scheme c lock pulses may disap- 
pear, result ing in synchronizat ion failure. The  analysis 
of  straight-line clocking with one-shots will  be  investi- 
gated in future work.  
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Notes 
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