
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2007; 19:89–105
Published online 13 June 2006 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe.1086

Grid benchmarking:
vision, challenges,
and current status

Marios D. Dikaiakos∗,†

Department of Computer Science, University of Cyprus, 1678 Nicosia, Cyprus

SUMMARY

Grid benchmarking is an important and challenging topic of Grid computing research. In this paper, we
present an overview of the key challenges that need to be addressed for the integration of benchmarking
practices, techniques, and tools in emerging Grid computing infrastructures. We discuss the problems
of performance representation, measurement, and interpretation in the context of Grid benchmarking,
and propose the use of ontologies for organizing and describing benchmarking metrics. Finally, we
present a survey of ongoing research efforts that develop benchmarks and benchmarking tools for the
Grid. Copyright c© 2006 John Wiley & Sons, Ltd.

Received 27 March 2006; Accepted 7 April 2006

KEY WORDS: Grid benchmarking; ontologies; performance evaluation

1. INTRODUCTION

Benchmarks are standardized programs or detailed specifications of programs designed to investigate
well-defined performance properties of computer systems according to a widely accepted set of
methods and procedures [1]. For many years, benchmarks have been used to characterize a large variety
of systems ranging from CPU architectures and caches to file-systems, databases, parallel systems,
Internet infrastructures, and middleware [2–10]. Computer benchmarking provides a commonly
accepted basis for comparing the performance of different computer systems in a fair manner [11].

Benchmarking can be just as beneficial in Grid computing. Benchmarking metrics published on
the Grid can provide a basis for users to assess the ‘quality of service’ expected of a Grid resource
or a Virtual Organization (VO), by providing computational services at a given cost or to rank

∗Correspondence to: Marios D. Dikaiakos, Department of Computer Science, University of Cyprus, 1678 Nicosia, Cyprus.
†E-mail: mdd@cs.ucy.ac.cy

Contract/grant sponsor: European Union, Working Group APART

Copyright c© 2006 John Wiley & Sons, Ltd.



90 M. D. DIKAIAKOS

resource centers in terms of performance and reliability. Grid benchmarks can be used by middleware
developers to compare different middleware solutions such as job submission services, resource
allocation policies, and scheduling algorithms. Grid benchmarks can serve as an evaluation of the
fitness of a collection of Grid resources for running a specific application or class of applications.
Benchmarks can also help study the effect of the dynamic nature of Grids to application performance
and gain insights into the properties of Grid architectures.

However, the complexity, the heterogeneity, and the dynamic nature of Grids raise serious
questions about the overall applicability and cost-effectiveness of Grid benchmarking. Performance
measurements are affected by a variety of factors, including the characteristics of resources allocated
for a particular run, the time-dependent latency and bandwidth of shared Internet links, and the
performance capacity of middleware libraries used at the application level. Existing platforms are
largely under continuous re-design and development, with very limited cross-platform interoperability,
making the specification, submission, and management of jobs a tedious process.

In this paper, we examine the challenges that arise in the context of Grid benchmarking and provide
a survey of ongoing Grid benchmarking research. The paper is organized as follows: Section 2 provides
a short overview of benchmarking principles; Section 3 presents the key characteristics of Grids and
explains why Grid benchmarking is important for Grid infrastructures; Section 4 discusses the key
challenges that need to be addressed in the Grid context in order to enhance the integration of Grid
benchmarking in Grid operations; Section 5 surveys ongoing research efforts in the area of Grid
benchmarking; we conclude in Section 6.

2. BENCHMARKS AND BENCHMARKING

2.1. Performance benchmarking

Benchmarks are used to investigate the performance capacity and behavior of computer systems under
carefully tuned workloads that stress particular aspects of system performance. Moreover, they are
used extensively to guide the optimization and assessment of system design and implementation, and
to help researchers establish quantitative arguments in systems research. A benchmark program can be:
(i) a small probe (micro-benchmark) designed to measure an isolated aspect of system performance;
(ii) an application kernel, which corresponds to the computationally demanding part of a real
application; (iii) a micro-kernel, that is a synthetic program mimicking some real workload; or
(iv) a full application, representative of an important class of applications.

Benchmarking is the process of running some benchmark(s) on a particular system in order to
measure the resulting performance of the system under conditions representative of a real-world
workload (see Figure 1). Benchmarking experiments should be carried out according to well-defined
rules for execution, measurement, and reporting. Furthermore, benchmarks have to meet certain
requirements [1]: For a benchmark to be easily portable to different platforms and accepted by wider
audiences, it should be easy to obtain and use. The specification of the benchmark and its execution
context should be openly available, self-contained, and concise. Moreover, its compilation, execution,
performance measurement, metrics’ storage, and management should be affordable in terms of costs
such as the management of the benchmarking process, hardware or software involved, execution time,
and storage. Performance metrics derived from benchmarking experiments should be easily associated
with the structure of the corresponding benchmarks and the characteristics of the system under scrutiny,

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:89–105
DOI: 10.1002/cpe



GRID BENCHMARKING 91

Input
Files

Configuration
Parameters

Workload
Benchmark
Program

System
under test

Metrics

Performance
Models

Perf. Analysis
Prediction

Performance
Measurements

Execution & Reporting
Rules

Figure 1. The process of performance benchmarking.

in order to facilitate the derivation of useful conclusions. Benchmarks are expected to be fair, in the
sense that they should not favor particular system designs or implementations. Last, but not least,
a benchmark program and its associated input parameters and files should result to workloads that are
representative of realistic conditions of use for the systems under study.

The use of benchmarking for computer system performance analysis, however, comes with
various shortcomings [1,12]. These shortcomings are usually related to the fairness and relevance of
benchmarks, the usefulness and the cost of benchmark measurements: designers often optimize their
systems according to well-known benchmarks in order to achieve improved benchmark results, even if
this does not translate to improved performance over real-life applications. Several studies have shown
that the configuration of a benchmarking experiment (choice of compilation flags, input parameters,
input files, etc.) may have a significant effect on how representative or relevant its measurements
are. Furthermore, typical benchmarks produce a few performance metrics, which do not constitute
a thorough characterization of the systems under study. The design of benchmarks producing realistic
workloads for network-centric systems, such as those that comprise the Internet infrastructure, involves
complex, multi-component setups, which render benchmarking overly complicated and expensive.

2.2. Dependability benchmarking

In the case of distributed, service-oriented systems, such as those that support Internet services and Grid
computing, dependability becomes equally important to performance, because of the very high cost that
service outage and degraded operation have to service-level objectives and the user-perceived quality
of service [13,14]. The dependability of a system is defined as its ability to deliver specified services,
and can be described in terms of metrics such as: (i) the robustness that the system displays under stress
conditions; (ii) system availability, i.e. the probability that a system works properly at some point in
time; (iii) system reliability, which is a measure of the system’s ability to provide proper service over
a period of time; (iv) system maintainability, which estimates the time it takes to restore proper system
function following a failure; and (v) system performability, which quantifies the system’s performance
in the presence of perturbations that affect its operation, including hardware, software, and external
network failures, operator errors, and unusual workload conditions, such as those triggered by flash
crowds, denial of service attacks, and targeted attacks that exploit system vulnerabilities.

A few studies have proposed benchmarking as a mechanism for assessing system robustness by cre-
ating systematically workloads that stress system capabilities and unveil their vulnerabilities [15,16].

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:89–105
DOI: 10.1002/cpe



92 M. D. DIKAIAKOS

Figure 2. The process of dependability benchmarking.

Going beyond robustness benchmarking, a number of studies are investigating the development of
benchmarking frameworks for evaluating system dependability and performability [17–19]. The goal
of performability/dependability benchmarking is to ‘provide cost-effective ways to evaluate the
behavior of components of computer systems in the presence of faults, allowing the quantification
of dependability attributes or the characterization of the systems in well defined dependability
classes’ [18]. To this end, performability benchmarking frameworks try to define the experimental
setting, the workload, the perturbation load, and the metrics required to capture and represent
dependability in a fair and systematic way (see Figure 2).

3. THE GRID SETTING

The Grid is emerging as a very large, distributed computing infrastructure that seeks to support resource
sharing and coordinated problem solving in dynamic, multi-institutional VOs [20]. Typical Grid
infrastructures, such as EGEE [21], comprise large numbers of heterogeneous resources (hardware
and software), distributed across multiple administrative domains and interconnected through an open
network. Access to those resources is provided to VO members through the Grid middleware, which
exposes high-level programming and communication functionalities to application programmers and
end-users, enforcing some level of resource virtualization [22]. VO membership and service brokerage
is regulated by policies of access and usage agreed among the infrastructure operators, the VOs,
the resource providers, and the recourse consumers.

The Grid infrastructure operator manages a number of central services that handle the authentication
and authorization of resource consumers, monitor resource usage, and collect accounting information
(Figure 3). Within a Grid infrastructure, the matchmaking between resource requests and available
resources is done by the Resource Broker, a middleware component belonging to the VO’s Workload
Management Services (WMS) [23,24]. The Resource Broker interprets the resource requirements of a
job submitted for execution to the VO. Then, it chooses a set of appropriate resources, using resource
usage and availability information retrieved from the Grid information service. Subsequently, the WMS
reserves the required resources, which may span across multiple administrative domains, and schedules
the execution of the submitted job. During job execution, and with the help of the VO’s monitoring
services, the WMS monitors resource consumption and compliance to VO policies, providing feedback
to the end-user; if necessary, it stops the job or manages its migration to a different set of resources.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:89–105
DOI: 10.1002/cpe



GRID BENCHMARKING 93

Figure 3. Grid architecture.

It is expected that the Grid will operate as an open marketplace, where different VOs offer access
to a variety of computational resources at a certain price. In this context, a resource provider that
plans to offer computational services through some Grid infrastructure will first have to negotiate the
terms of its participation to the infrastructure with infrastructure operator (see Figure 4). At the other
end of the marketplace, a resource consumer that wishes to join a VO will have to first evaluate and
compare the resource offerings of different infrastructures and VOs. These negotiations will take into
account the ‘quality’ of the resources contributed by a resource provider to the VO, and the resources
made available by the VO to the resource consumer. Quality should incorporate aspects such as the
functionality, the performance capacity, the availability, and the performability of those resources.
The outcome of these negotiations will be encoded in contracts (Service Level Agreements (SLAs))
between the resource provider and the VO Operator, and between the VO Operator and the resource
consumer.

The negotiation process outlined above is essentially a dynamic procurement procedure, the results
of which have to be established upon some commonly accepted set of quantitative metrics, and on
commonly accepted ground rules on how to produce those metrics. The traditional practice for deriving
such metrics, as discussed in Section 2, is through benchmarking. Nevertheless, the key defining
principles of Grids raise several challenges and issues vis-à-vis the requirements that need to be
satisfied so that benchmarks and benchmarking results become acceptable and useful in the context
of the Grid.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:89–105
DOI: 10.1002/cpe



94 M. D. DIKAIAKOS

VO 
Operator

VO 
Operator

VO
Operator

VO
Operator

VO
Operator

VO
Operator

VO
Operator

Resource
Provider

Resource
Provider

Resource
Provider

Resource
Provider

Resource
Provider

Resource
Provider

Resource
Provider

Resource
Consumer Resource

Consumer

Resource
Consumer

Resource
Consumer

Resource
Consumer

Resource

Consumer

VO
Operator

VO
Operator

A Grid Marketplace

Negotiati
on

Negotiati
on

N
e
g
o
tia
tio
n

Negotiation

Figure 4. A Grid marketplace.

4. GRID BENCHMARKING CHALLENGES

We define as Grid benchmarking the use of benchmark programs for the fair, concise, and affordable
performance characterization of different aspects of a Grid infrastructure. The applicability of Grid
benchmarking in the context of the Grid, and issues such as the choice, the proper interpretation, and
the reliability of benchmarking metrics and the cost of administering Grid benchmarks, have to be
addressed while taking into account issues raised by the openness and scale of Grid infrastructures and
by the virtualization imposed from the Grid middleware. Our conjecture is that traditional benchmarks
and their context of use cannot be ported directly to a Grid setting, for the reasons described below.

4.1. Performance representation

Grids are inherently complex structures, consisting of hierarchical collections of heterogeneous
resources and being managed by layers of interacting software components [25,26]. A Grid
infrastructure comprises geographically distributed Grid sites, which belong to different administrative
domains, communicate through Internet, and make their resources available to one or more VOs
(see Figure 5) [20,21]. Typically, a Grid site has a cluster of computing and storage nodes
interconnected through a high-speed local-area network. Each Grid site also hosts local services, which
manage the site’s membership to a Grid infrastructure, providing remote access to local resources and
information. The operation of Grid infrastructures is supported by central services, which provide
information about the configuration and state of infrastructure resources, facilitate job submission, job
control, etc.

This multi-layered structure of the Grid suggests that the observed performance of Grid services
and applications is affected by a variety of factors, such as [27]: (i) the performance capacity of

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:89–105
DOI: 10.1002/cpe



GRID BENCHMARKING 95

Computing

Service
Storage 

Service

Computing

Service

Computing

Service

Computing 

Node

Computing 

Node

Computing 

Node

Computing 

Node

Computing 

Node

Computing 

Node

Computing 

Node

Computing 

Node

Storage
Node Storage

Node

Comp. 

Node

Comp. 

Node

Comp. 

Node

Comp. 

Node

Comp. 

Node

Comp. 

Node

VO Central Services

(Resource Broker, Information Service, VO Membership)

Grid Site

Grid Site

Grid Site

Virtual Organization

Wide-area Network

Storage 

Service

LAN LAN LAN

CPU

Main

memory

Cache

Disk

Network

Interface

Computing Node

Figure 5. A typical Grid architecture.

local Grid sites (this depends on the performance of hardware entities, such as CPUs, memory
hierarchies, computing nodes, storage devices, local networking, and clusters); (ii) the performance
of the wide-area networks connecting Grid sites into a Grid infrastructure; (iii) the performance
and overhead of libraries and services providing Grid applications with support for communication,
synchronization, bulk data transfer, database querying, and other higher-level Grid programming
abstractions; (iv) the performance and overhead of Grid services supporting job submission and
management, such as workload management systems, resource brokers, and Grid information services;
and (v) the reliability and the robustness of Grid middleware and services.

One of the principal goals of benchmarking is to enable the characterization and comparison of
competing systems under a variety of realistic conditions. Owing to the complexity of the Grid,
however, meaningful comparisons of Grids cannot be established upon a small set of performance
metrics. Instead, we need an ontology of performance metrics describing different aspects of Grid
performance at different levels of abstraction. An ontology is a ‘formal explicit description of
concepts (also called classes) in a domain of discourse, properties (also called slots or roles) of each
concept describing various features and attributes of the concept, and restrictions on slots (also called
facets)’ [28]. An ontology together with a set of individual instances of classes constitutes a knowledge
base [28]. We provide a simple example of such an ontology in Figure 6. According to this example,
the representation of Grid performance is organized in classes of metrics, which correspond to the

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:89–105
DOI: 10.1002/cpe



96 M. D. DIKAIAKOS

Grid Infrastructure
Performance

Site Performance

Wide-Area Net Perform.

Grid-wide Metrics

Central Services Metrics

Site Performance

Computing Node Perform.

Storage Node Performance

Network-Topology Perform.

Site-wide Metrics

Computing Services Metrics

Storage Services Metrics

Wide-Area Network 
Performance

Network-Topology Perform.

Network Services Bandwidth

Computing Node
Performance

CPU Performance

Memory Hierarchy Perform.

I/O Performance

Computing Node-wide Metrics

Storage Node
Performance

CPU Performance

Memory Hierarchy Perfrom.

I/O Performance

Storage Node-wide Metrics

CPU Performance

Integer Operation Metrics

Floating-Point Op. Metrics

CPU-wide Metrics

Memory Hierarchy 
Performance

Memory Bandwidth Metrics

Memory Capacity Metrics

I/O Performance

File I/O Bandwidth

Disk I/O Metrics

Network-Topology
Performance

Network-link Bandwidth

Network-link Latency

Bisection Bandwidth

Figure 6. A simple Grid performance ontology: each class contains as attributes aggregated and direct metrics;
direct metrics are presented with the oblique font.

basic abstractions of the Grid architecture of Figure 5. The performance of each class in our ontology
is specified through the slots (properties) of the class. Our ontology supports two types of slots.

1. Extrinsic slots correspond to metrics that can be derived through direct performance
measurements of the respective Grid entities. For example, the measured completion time of
the High-Performance Linpack benchmark [5] and a measured performance indicator of some
Grid service can be adopted as extrinsic performance metrics for Grid sites. The former is a
metric representing the performance capacity of the site running parallel numerical calculations
(a ‘site-wide’ metric), whereas the latter is a metric representing the performance of a service
associated with that particular site.

2. Instance slots of an ontology class refer to the performance of its constituent Grid-entity
abstractions. For example, the instance slots of a Grid site include the performance of that site’s
computing nodes, storage nodes, and local network (see Figure 6).

We refer to extrinsic slots as direct performance metrics and instance slots as aggregated performance
metrics.

When measuring direct performance metrics, measurements may have to be repeated in order to
derive values of sufficient statistical significance that can be distilled into cumulative distribution
functions. Hence, we will be able to provide more understandable and concise metrics losing, however,
potentially useful information. Finally, when striving to characterize higher-level abstractions of the
Grid architecture, we need to go beyond direct and aggregated metrics and describe qualitative factors

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:89–105
DOI: 10.1002/cpe



GRID BENCHMARKING 97

that affect observable Grid performance, such as the heterogeneity, the robustness, the reliability, and
the level and quality of maintenance of Grid infrastructures. Such descriptions could be derived by
models that combine direct and aggregated metrics, providing derived metrics.

The definition, organization, and storage of Grid-performance metrics represents an important
challenge. To address this challenge, we need to come up with expressive data models, amenable
to statistical, data-mining or artificial intelligence post-processing. These models must be described in
open and extensible formats and must be widely adopted by different tools and middleware systems,
in order to encourage the wide acceptance and use of metrics by other Grid subsystems.

4.2. Measuring performance

4.2.1. Choosing the benchmarks

A Grid performance ontology should be instantiated into a Grid performance knowledge-base through
a series of benchmarking experiments that produce instances for the classes of the ontology. To this end,
we need to design benchmarks that investigate the performance behavior of Grid entities belonging to
different layers of the Grid architecture, from CPUs and memory hierarchies to whole sites and central
Grid services (Figure 5) [27,29]. In particular, we can use the following.

• Micro-benchmarks for ‘stress-testing’ and measuring the performance of some Grid entity in
isolation. For example, using a micro-benchmark we can estimate the performance of a network
link in terms of the file-transfer time between two different Grid sites, or the performance of a
CPU in terms of the floating point operations per second achieved on some chosen program.

• Micro-kernels, for measuring the performance of some composite Grid entity under some
synthetic workload designed to stress-test simultaneously several aspects of the entity’s
performance. For example, we can estimate the performance of a Grid site’s cluster in terms of
the running time of the parallel High-Performance Linpack benchmark [30] or the performance
of a single-processor computing node using a sequential version of Linpack.

• Application kernels and Grid applications used to investigate the performance of some Grid
entity (node, site, infrastructure) under realistic workload conditions. It should be noted,
however, that on the Grid there is still a lack of widely accepted applications and prevalent
programming paradigms. Consequently, it may be too early to identify a set of ‘representative’
Grid applications after which application benchmarks can be modeled, and to choose an
appropriate programming paradigm for developing such benchmarks.

The success of benchmarking as a performance characterization approach depends not only on the
choice of benchmarks but also on benchmark tuning, that is, on the selection of input values, files,
and configuration parameters. The right tuning is important for the benchmarking experiments to be
realistic and relevant with respect to the measured resources (main memory size, nominal network
bandwidth, etc.). Owing to the Grid’s heterogeneity and scale, however, the choice of parameter values
and input files can vary between different parts of an infrastructure. In the context of large Grids, it may
be very expensive to tune benchmarks manually; therefore, we need to have systems and algorithms
that tune the benchmarks automatically, taking into account the configuration of the underlying Grid
infrastructure.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:89–105
DOI: 10.1002/cpe



98 M. D. DIKAIAKOS

We also need common and open standards for representing benchmark specification and benchmark
execution conditions. The existence and wider adoption of such standards will enhance the trust
that Grid operators and end-users have on published benchmarking results, and will allow the
interoperability of benchmarking tools with other Grid middleware components. The definitions and
properties of benchmarks can be a part of an extended performance ontology, going beyond that
presented in Figure 6.

4.2.2. Measuring a moving target

The underlying assumption when benchmarking a large-scale computing system (such as a massively
parallel machine) is that the system is readily available, properly functioning, and that its configuration
is well known and not subject to change; furthermore, that the system is homogeneous in terms
of hardware and software setup. These assumptions do not hold for Grids. Owing to their scale
and lack of central administrative control, the likelihood that some resources are not available for
benchmarking and/or functioning properly at any given time is increased. Furthermore, Grid jobs
are susceptible to total or partial failure and degraded performance, due to problems that may occur
across the Grid infrastructure; usually, such problems are prompted by operator error, maintenance
activities, and various faults (network, hardware, or software), which lie outside end-user control.
Finally, the heterogeneity of Grids may raise the need for a different customization of benchmarking
parameters for the differing parts of a Grid infrastructure. Consequently, it is expected that the
collection of representative and acceptable performance metrics will require repeated and carefully
tuned benchmarking sessions. Therefore, we need to do the following.

• Validate the advertised configuration, state, and functionality of Grid resources, possibly running
quick end-to-end tests designed to discover problems that affect the functionality, robustness, and
overall performance of a Grid.

• Capture the actual subset of Grid resources assigned to a running benchmark, along with their
status; store this representation together with the measured metrics in order to facilitate further
analyses.

• Conduct successive benchmarking experiments until we get a complete and up-to-date
performance snapshot of a whole infrastructure. Merge individual performance measurements
into a coherent set of metrics.

• Repeat benchmarking experiments in order to derive measurements of adequate statistical
significance and to keep stored metrics up to date, when the infrastructure changes.

4.2.3. Trusting the measurements

Programs submitted to the Grid are executed on ‘virtual’ machines, dynamically assembled
immediately after job submission; the precise composition and architecture of those machines might
not be known beforehand and may change between different runs or even within a single run. Also, Grid
users do not have full control over the resources assigned to their jobs and have very limited influence
on scheduling or re-scheduling decisions, on available bandwidth, and on network latency. Therefore,
benchmarks submitted for execution to a Grid infrastructure may end-up sharing the same resources
with other tasks, which have been co-allocated by a Resource Broker, or run without authorization from

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:89–105
DOI: 10.1002/cpe



GRID BENCHMARKING 99

the controlling VO (‘free-riders’), or are runaway processes. These tasks can affect the benchmark
execution time and ‘pollute’ the derived metrics. In such a non-dedicated and possibly transient
infrastructure, it is not easy to obtain sets of reproducible measurements that can be easily trusted
and widely accepted.

The problem of measurement pollution can be addressed through policy mechanisms applied at the
Grid infrastructure and VO level. Such mechanisms could handle benchmarking as a maintenance
activity, during which the middleware ensures the exclusive use of resources by suspending non-
benchmarking jobs or withholding the submission thereof, and by killing runaway or free-rider
processes. In cases where such policy mechanisms cannot be implemented or enforced, we need
to come up with approaches for assessing the trustworthiness of measured metrics and filtering out
polluted measurements.

4.3. Metrics interpretation

Benchmarking metrics, as such, do not provide direct insights about the causes of a particular
performance behavior. In fact, the more complex a system is, the more difficult it becomes to combine
individual measurements into a meaningful system analysis and to predict the performance of real
applications. Consequently, the proper interpretation of Grid benchmarking metrics is a challenging
task, which requires the combination of benchmarking metrics with appropriate models for the Grid
and its applications. To the best of our knowledge, however, the field of Grid modeling is still at its
infancy, although some promising results have already appeared in the literature [31].

Therefore, we need new and mature theoretical and practical tools that will support the interpretation
of information stored in Grid performance knowledge-bases, guiding the mapping of applications
to Grid resources, the prediction of Grid application performance, the performance debugging of
applications, the re-configuration of Grid infrastructures, etc.

5. A BRIEF SURVEY OF CURRENT APPROACHES

Grid benchmarking has been an active field of research in recent years. A Research Group is
dedicated specifically to Grid benchmarking [32] within Global Grid Forum, the organization that
coordinates standardization of Grid architectures and protocols [33]. A number of research groups and
projects have focused on different aspects of Grid benchmarking, proposing benchmark specifications,
benchmarking suites, and benchmarking tools for Grids. In this section, we provide a brief overview
of these efforts.

5.1. Benchmarking Grid infrastructures

As mentioned earlier, the multi-layered structure of the Grid architecture calls for benchmarks that
investigate performance aspects of the different Grid layers. A number of research efforts focus on
the highest layer of the Grid architecture, considering Grid infrastructure as a single, unified resource
that should be characterized through carefully selected and tuned benchmarks. This approach follows
naturally from one of the key goals of Grid computing, which is the complete virtualization of
distributed resources behind simple APIs and communication protocols. Research efforts adopting

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:89–105
DOI: 10.1002/cpe



100 M. D. DIKAIAKOS

this approach seek to develop and validate benchmarks representative of demanding Grid workloads.
Such benchmarks can be used to derive metrics of Grid-infrastructure performance or to investigate the
behavior of Grid subsystems.

5.1.1. NAS Grid Benchmarks

One of the first proposed Grid benchmarks is the NAS Grid Benchmark (NGB) suite, also known
as the suite of ALU Intensive Grid Benchmarks (AIGB) [34,35]. The NGB suite comprises
paper-and-pencil specifications of different computations, along with recommendations for data-
structure sizes. NGB authors also provide a reference implementation of their benchmarks [36].
The NGB specifications define a set of computationally intensive, synthetic Grid benchmarks, which
are representative of scientific, post-processing, and visualization workloads. The benchmarks are
structured as dataflow graphs of communicating components. The components (nodes) of the NGB
graphs are programs selected from the NAS Parallel Benchmark (NPB) suite [2]. The communication
between these components carries initialization and control information rather than actual data
results. NGB comprises four different classes of data-flow graphs, each corresponding to a different
communication pattern: Embarrassingly Distributed, Helical Chain, Visualization Pipeline, and Mixed
Bag. The selection of the computation and communication patterns implemented by the NGB is
supposed to represent characteristic Grid workloads arising from loosely coupled and pipelined Grid
applications [35]. Job turnaround time is proposed as the performance metric to be reported with NGB
experiments [35], although the NGB authors recommend the reporting of performance measurements
for individual NGB tasks and communications.

NGB was designed to serve as a ‘uniform tool for testing functionality and efficiency of Grid
environments’ [35]. The mapping and scheduling of NGB jobs to some Grid infrastructure, however,
as well as the conditions of their execution, are left to the Grid environment and are not a part of the
configuration or the output of the benchmarks.

A few recent studies have published experiments with implementations of the NGB [37,38]. In [37],
the NGB authors report experiments conducted with two implementations of NGB, deployed on
the NASA Ames nodes of NASA’s Information Power Grid (IPG) [39]. The discussion presented
in [37] shows that the configuration, administration, and analysis of NGB experiments requires an
extensive manual effort. Furthermore, the results reported show that the job turnaround time metric
provides little if any insights about a Grid, even if it is derived through restricted benchmarking
experiments that involve machines under the same administrative domain and job submissions
overwriting Grid scheduler decisions. The reason is that a large number of factors, which are outside
the NGB specification, determine the success or failure of a submitted NGB job and its performance
measurements. For example, the orchestration of the data-flow computation, the use (or not) of local
queuing systems, network traffic, file-system configuration, the IPG service setup, and the effect of
other jobs running on the same resources. All of these factors, however, need to be taken into account
and reported when trying to analyze job turnaround time. Consequently, it is not clear whether there is
anything to be learned from such a simple performance metric for the efficiency and the functionality
of a Grid infrastructure.

In [38], the authors use NGB to estimate the overhead of job submission Grid services. To this end,
they submit NGB jobs to a local cluster that comprises two multiprocessor nodes and runs the Sun
Grid Engine and Globus. Measurements show that job submission through the Grid middleware incurs

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:89–105
DOI: 10.1002/cpe



GRID BENCHMARKING 101

extra delays, but that these delays become minimal for longer computations. Furthermore, experiments
show that submission through Globus results in a higher overhead than submission through the Sun
Grid Engine. The paper, however, provides little information about the NGB implementation used and
the handling of NGB data-flow dependencies. Furthermore, it is not clear how these results would scale
in larger and open Grids.

5.1.2. Grid Assessment Probes

An approach complementary to NGB proposes the use of micro-benchmarks instead of synthetic
applications for measuring Grid infrastructures. This approach is developed in the context of the Grid
Assessment Probes (GRASP) project of the San Diego Supercomputing Center [40]. GRASP times the
lifecycle of a Grid micro-benchmark running on Globus, including authentication, resource discovery,
and validation. GRASP codes implement three alternative patterns of data exchange (3-node, circle,
gather) between different Grid nodes and capture the performance of basic Grid operations such as
file transfers and remote execution. A series of experiments using the benchmark probes have been
executed on three nodes of the GrADS testbed [41], providing insights into the effects that network
variability has on measured end-to-end performance and uncovering testbed configuration problems.

5.2. Benchmarking Grid services

The performance of Grid middleware services affects the overall quality of a Grid environment by
adding extra overhead to job turnaround times and delaying crucial operations, such as workload
management, job monitoring, and control. Furthermore, badly designed or mis-configured Grid
services may not be able to sustain a high-rate of job submissions, the timely update of published
Grid state information, and the effective allocation of Grid resources.

In an effort to isolate and evaluate quantitatively the performance of Grid services, researchers
have recently proposed synthetic micro-kernels that target Grid Information and Monitoring Services
(GIS) [42,43]. The GIS micro-kernels generate sequences of queries, submitted to different GISs, and
report measurements of the query response time and throughput (average number of requests processed
by a service per second). Additional metrics supported are the ease of use, which quantifies the work
that a client must undertake to obtain the desired information from the Grid service [42], and the
average load of the machine running the service [43]. Implementations of the GIS micro-kernels were
used to study the performance of alternative database systems for storing Grid information [42], and to
compare the performance and scalability of three different GISs [43].

Grid-service benchmarks are important tools for assessing the performance of Grid services and for
comparing alternative services or different service configurations. Therefore, it is necessary to have
more benchmarks targeting critical Grid services beyond information and monitoring, such as queuing
systems, security services, and resource brokers. We anticipate that the need for such benchmarks
will be increased as Grids move towards a fully service-oriented architecture. The design of adequate
benchmarks, however, will require a better understanding of Grid service workloads, which can be
made possible through Grid characterization studies. Furthermore, it will be necessary to address the
high cost of Grid-service benchmarking administration and results analysis. Finally, new benchmarks
are required to measure Grid-service dependability, which is a primary concern in current large Grid
infrastructures.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:89–105
DOI: 10.1002/cpe



102 M. D. DIKAIAKOS

5.3. Benchmarking Grid resources

An important factor that needs to be taken into account when mapping applications to the Grid is
the performance of hardware resources made available through its VOs (sites, computing nodes,
file servers, network links, etc). Benchmarking represents the obvious choice for characterizing the
performance of Grid resources quantitatively. The performance characterization of Grid resources at
different layers of the Grid architecture has been examined in the context of the CrossGrid project [44]
and led to the development of the GridBench tool and suite of benchmarks [45].

GridBench follows a layered approach to characterize Grid resources at different layers of
abstraction, in accordance to the Grid architecture of Figure 3 [27,46]. Most of the codes included
in the GridBench suite are not new; they are open-source, sequential, and parallel benchmarks, which
have been tested and used extensively in the past and have been ported to the Grid for the needs of
GridBench (e.g. STREAM, Linpack, Whetstone, MPPTest). In addition to pre-existing benchmarks,
the GridBench suite incorporates kernels extracted from the computationally intensive applications
developed in the context of CrossGrid [44].

GridBench benchmarks were chosen in order to provide measurements for an ontology of metrics
similar to that presented in Figure 6. The GridBench benchmarks have been used to characterize the
performance capacity of resources belonging to the CrossGrid testbed [47], a large Grid infrastructure
consisting of 18 sites distributed throughout Europe [49]. Also, GridBench was recently ported and
demonstrated on the pan-European Grid infrastructure of EGEE [21].

The usefulness of GridBench-derived metrics was demonstrated in a scenario involving the
deployment of a computational hemodynamics Grid application developed by the University of
Amsterdam [48] on the CrossGrid testbed. In particular, we used GridBench micro-benchmarks to
conduct a detailed characterization of the CrossGrid infrastructure, and used the metrics gathered
to guide the selection of resources on which the hemodynamics application could run and achieve
satisfactory performance [50].

Early demonstrations have shown that Grid-resource performance metrics can be used successfully
to guide resource allocation [29,23] and application scheduling [51]. However, more work is required
in the context of very large heterogeneous infrastructures where the collection, administration, and
update of performance metrics is a difficult task.

5.4. Grid benchmarking tools

As explained earlier, benchmarking Grids can be hard and very expensive. Therefore, we need
powerful, Grid-enabled tools to facilitate Grid benchmarking experimentation. Issues related to the
development of a tool for Grid benchmarking have been addressed in the context of the GridBench
work [45]. GridBench is an integrated tool designed to facilitate the configuration and administration
of Grid benchmarks, the easy integration of new Grid benchmarks, the validation of collected metrics,
the integration of metrics with benchmark specifications, and the analysis of benchmarking results.

GridBench is built around the GridBench Definition Language (GBDL) [46], which is an XML
language that integrates benchmark specifications (code, parameters, metrics), the configuration of
benchmarking experiments, and infrastructure monitoring data associated with particular experiments.
GBDL records are created through the GridBench graphical-user interface, and populated with data
extracted from GISs during benchmark submission and execution.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:89–105
DOI: 10.1002/cpe



GRID BENCHMARKING 103

GridBench translates GBDL benchmark specifications to Grid job definitions encoded in a job
submission language of choice (for instance, RSL for Globus or JDL for Condor/EDG) and manages
the submission and monitoring of benchmarking jobs, the collection of metrics, and the storage of
results. An analysis module allows for the graphical visualization of metrics in various forms and
supports the performance comparison between different Grid sites.

6. CONCLUSIONS

The transition of the Grid into an open marketplace of computational resources requires, among
other things, the operation of performance-aware Grid services and tools. These services should rely
on up-to-date, reliable, widely acceptable, and accessible performance metadata, characterizing the
performance capacity of Grid services and hardware resources. The existence of Grid benchmarking
services and tools is necessary for consolidating such metadata. However, the design and development
of benchmarks for Grids faces several challenging obstacles. Furthermore, Grid benchmarking is a
difficult and costly endeavor. Therefore, several research advances are required in order to integrate
benchmarking practices and techniques in the Grid middleware. In particular they include the
following.

• The development of a wide range of Grid benchmarks that are representative of the various
classes of emerging Grid applications and can be used to measure the performance at the different
layers of the Grid architecture. The introduction of benchmarks measuring the dependability of
Grids and Grid subsystems.

• The definition of ontologies of metrics that are widely acceptable and can be easily combined
with specifications of benchmarks and benchmarking conditions, and with ontologies for Grid
resources, services, and applications. The development of open and extensible data models
for encoding these ontologies, allowing the easy integration of performance metrics with Grid
configuration and monitoring information.

• The development of user-friendly tools that facilitate the management of Grid benchmarking
experiments by Grid administrators, application developers, and end-users. Also, the
development of techniques for automated and adaptable administration and management of
benchmarking experiments.

• New models and modeling tools to enable the interpretation of benchmarking results and
the mining of interesting properties out of knowledge bases that comprise information about
benchmarking experiments, metrics, and infrastructure architecture, configuration and state.

ACKNOWLEDGEMENTS

Work supported in part by the European Union under the Working Group on Automatic Performance Analysis:
Real Tools (APART).

REFERENCES

1. Weicker R, Benchmarking. Proceedings of Performance 2002 (Lecture Notes in Computer Science, vol. 2459),
Calzarossa MC, Tucci S (eds.). Springer: Berlin, 2002; 179–207.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:89–105
DOI: 10.1002/cpe



104 M. D. DIKAIAKOS

2. Bailey DH et al. The NAS parallel benchmarks. The International Journal of Supercomputer Applications 1991;
5(3):63–73.

3. Dikaiakos MD, Kyriakou M, Samaras G. Performance evaluation of mobile-agent middleware: A hierarchical approach.
Proceedings of the 5th International Conference on Mobile Agents (MA 2001) (Lecture Notes in Computer Science,
vol. 2240), Picco GP (ed.). Springer: Berlin, 2002; 244–259.

4. Dongarra JJ, Hey T, Strohmaier E. PARKBENCH: Methodology, relations, and results. High-Performance Computing and
Networking (HPCN’96 Europe) (Lecture Notes in Computer Science, vol. 1067), Liddell H, Colbrook A, Hertzberge B,
Sloot P (eds.). Springer: New York, 1996; 770–777.

5. Dongarra JJ. Performance of various computers using standard linear equations software (Linpack Benchmark Report).
Technical Report CS-89-85 (Updated version), Department of Computer Science, University of Tennessee, 2004.

6. Gray J. The Benchmark Handbook for Database and Transaction Processing Systems (2nd edn). Morgan Kaufmann:
San Mateo, CA, 1993.

7. Manley S, Seltzer M, Courage M. A self-scaling and self-configuring benchmark for Web servers. Proceedings of the 1998
Sigmetrics Conference on Measurement and Modeling of Computer Systems. ACM Press: New York, 1998; 270–272.

8. Samaras G, Dikaiakos MD, Spyrou C, Liverdos A. Mobile agent platforms for Web-databases: A qualitative and
quantitative assessment. Proceedings of the Joint Symposium ASA/MA’99 1st International Symposium on Agent Systems
and Applications (ASA ’99) and 3rd International Symposium on Mobile Agents (MA ’99). IEEE Computer Society Press:
Los Alamitos, CA, 1999; 50–64.

9. Transaction Processing Performance Council (TPC). TPC Benchmark W (Web Commerce)—Draft Specification, December
1999.

10. Woo SC, Ohara M, Torrie E, Singh JP, Gupta A. The SPLASH-2 programs: Characterization and methodological
considerations. Proceedings of the 22nd Annual International Symposium on Computer Architecture. ACM Press:
New York, 1995; 24–37.

11. Dongarra J, Gentzsch W (eds.). Computer Benchmarks. North-Holland: Amsterdam, 1993.
12. Gustafson J. Purpose-based benchmarks. International Journal of High Performance Computing Applications 2004;

18(4):475–487.
13. Patterson DA. A simple way to estimate the cost of downtime. Proceedings of LISA ’02: 16th Systems Administration

Conference. USENIX Association: Berkeley, CA, 2002; 185–188.
14. Patterson DA. Availability and Maintainability � Performance: New focus for a new century. Keynote Address, USENIX

Conference on File and Storage Technologies (FAST ’02), January 2002. USENIX Association: Berkeley, CA, 2002.
15. Koopman P, Sung J, Dingman C, Siewiorek D, Marz T. Comparing operating systems using robustness benchmarks.

Proceedings of the 16th IEEE Symposium on Reliable Distributed Systems. IEEE Press: Piscataway, NJ, 1997; 72–79.
16. Miller B, Fredriksen L, So B. An empirical study of the reliability of UNIX utilities. Communications of the ACM 1990;

33(12):32–44.
17. Brown A, Patterson DA. Towards availability benchmarks: A case study of software RAID systems. Proceedings of the

2000 USENIX Annual Technical Conference. USENIX Association: Berkeley, CA, 2000; 263–276.
18. Madeira H, Koopman P. Dependability benchmarking: Making choices in an n-dimensional problem space. Proceedings

of the Workshop on Evaluating and Architecting System dependabilitY (EASY), International Conference on Dependable
Systems and Networks (DSN) 2001, July 2001. Available at:
http://www.crhc.uiuc.edu/EASY/easy01-program.html [May 2006].

19. Oppenheimer D, Brown AB, Traupman J, Broadwell P, Patterson DA. Practical issues in dependability benchmarking.
Proceedings of the 2nd Workshop on Evaluating and Architecting System Dependability (EASY), 2002. Available at:
http://www.crhc.uiuc.edu/EASY/easy02-final-program.html [May 2006]

20. Foster I, Kesselman C, Tuecke S. The anatomy of the Grid: Enabling scalable virtual organizations. International Journal
of Supercomputer Applications 2001; 15(3):200–222.

21. EGEE: Enabling Grids for eScience in Europe. http://www.eu-egee.org [April 2005].
22. Xu M, Hu Z, Long W, Liu W. Service virtualization: Infrastructure and applications. The Grid: Blueprint for a New

Computing Infrastructure. Elsevier: Amsterdam, 2004; 179–190.
23. Heymann E, Fernandez A, Senar MA, Saltv J. The EU-CrossGrid approach for Grid application scheduling. Proceedings

of Grid Computing: 1st European AcrossGrids Conference, Santiago de Compostella, Spain, February 2003 (Lecture Notes
in Computer Science, vol. 2970), Rivera F, Bubak M, Gomez-Tato A, Doallo R (eds.). Springer: Berlin, 2004; 17–24.

24. Thain D, Livny M. Building reliable clients and services. The Grid: Blueprint for a New Computing Infrastructure, Foster I,
Kesselman C (eds.). Elsevier: Amsterdam, 2004; 285–318.

25. Bubak M, Malawski M, Zajac K. The CrossGrid Architecture: Applications, Tools, and Grid Services. Proceedings of
Grid Computing: 1st European AcrossGrids Conference, Santiago de Compostella, Spain, February 2003 (Lecture Notes
in Computer Science, vol. 2970), Rivera F, Bubak M, Gomez-Tato A, Doallo R (eds.). Springer: Berlin, 2004; 309–316.

26. Foster I, Kesselman C. Concepts and architecture. The Grid: Blueprint for a New Computing Infrastructure, Foster I,
Kesselman C (eds.). Elsevier: Amsterdam, 2004; 37–64.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:89–105
DOI: 10.1002/cpe



GRID BENCHMARKING 105

27. Tsouloupas G, Dikaiakos MD. GridBench: A tool for benchmarking Grids. Proceedings of the 4th International Workshop
on Grid Computing (Grid2003). IEEE Computer Society Press: Los Alamitos, CA, 2003; 60–67.

28. Fridman Noy N, McGuinness D. Ontology development 101: A guide to creating your first ontology. Technical Report
KSL-01-05, Stanford Knowledge Systems Laboratory, October 2001.

29. Nudd GR, Jarvis SA. Performance-based middleware for Grid computing. Concurrency and Computation: Practice and
Experience 2004; 17:215–234.

30. Petitet A, Whaley RC, Dongarra J, Cleary A. HPL—a portable implementation of the High-Performance Linpack
Benchmark for distributed-memory computers. http://www.netlib.org/benchmark/hpl/ [March 2005].

31. Hey AJG, Papay J, Surridge M. The role of performance engineering techniques in the context of the Grid. Concurrency
and Computation: Practice and Experience 2005; 17:297–316.

32. Grid Benchmarking Research Group. Global Grid Forum. https://forge.gridforum.org/projects/gb-rg [March 2005].
33. Global Grid Forum. http://www.ggf.org [April 2005].
34. Van der Wijngaart RF. ALU Intensive Grid Benchmarks. Global Grid Forum, Research Group in Grid Benchmarking,

GWD-I, February 2004.
35. Frumking M, Van der Wijngaart RF. NAS Grid Benchmarks: A tool for Grid space exploration. Cluster Computing 2002;

5(3):315–324.
36. NAS Grid Benchmarks. http://www.nas.nasa.gov/Software/NPB [May 2006].
37. Van der Wijngaart RF, Frumkin MA. Evaluating the Information Power Grid using the NAS Grid Benchmarks. Proceedings

of the High-Performance Grid Computing Workshop, 18th IEEE International Parallel and Distributed Processing
Symposium (IPDPS), Santa Fe, NM, April 2004. IEEE Computer Society Press: Los Alamitos, CA, 2004.

38. Peng L, See S, Song J, Stoelwinder A, Neo HK. Benchmarks performance on Cluster Grid with NGB. Proceedings of the
High-Performance Grid Computing Workshop, 18th IEEE International Parallel and Distributed Processing Symposium
(IPDPS), Santa Fe, NM, April 2004. IEEE Computer Society Press: Los Alamitos, CA, 2004.

39. NASA’s Information Power Grid. http://www.ipg.nasa.gov [March 2005].
40. Chun G, Dail H, Casanova H, Snavely A. Benchmark probes for Grid assessment. Proceedings of the High-Performance

Grid Computing Workshop, 18th IEEE International Parallel and Distributed Processing Symposium (IPDPS), Santa Fe,
NM, April 2004. IEEE Computer Society Press: Los Alamitos, CA, 2004.

41. Berman F et al. The GrADS Project: Software support for high-level Grid application development. International Journal
of Supercomputing Applications 2001; 15(4):327–344.

42. Plale B, Jacobs C, Liu Y, Moad C, Parab R, Vaidya P. Understanding Grid resource information management through
a synthetic database benchmark/workload. Proceedings of the 4th IEEE/ACM International Symposium on Cluster
Computing and the Grid. ACM Press: New York, 2004.

43. Zhang X, Freschl JL, Schopf JM. A performance study of monitoring and information services for distributed systems.
Proceedings of the 12th IEEE International Symposium on High Performance Distributed Computing (HPDC’03). IEEE
Computer Society Press: Los Alamitos, CA, 2003.

44. European CrossGrid Project. http://www.crossgrid.org [April 2005].
45. GridBench: A tool for benchmarking Grids. http://grid.ucy.ac.cy/GridBench [April 2005].
46. Tsouloupas G, Dikaiakos MD. GridBench: A workbench for Grid benchmarking. Proceedings of the European Grid

Conference on Advances in Grid Computing (EGC 2005), Amsterdam, The Netherlands, 14–16 February 2005 (Lecture
Notes in Computer Science, vol. 3470). Springer: Berlin, 2005; 211–225.

47. Marco J et al. First prototype of the CrossGrid testbed. Proceedings of the Grid Computing 1st European AcrossGrids
Conference, Santiago de Compostella, Spain, February 2003 (Lecture Notes in Computer Science, vol. 2970), Rivera F,
Bubak M, Gomez-Tato A, Doallo R (eds.). Springer: Berlin, 2004; 67–77.

48. Sloot PMA. Tirado-Ramos A, Hoekstra AG, Bubak M. An interactive Grid environment for non-invasive vascular
reconstruction. Proceedings of the 2nd International Workshop on Biomedical Computations on the Grid (BioGrid’04),
in Conjunction with the 4th IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid2004),
Chicago, IL, April 2004. IEEE Computer Society Press: Los Alamitos, CA, 2004.

49. Tsouloupas G, Dikaiakos MD. Characterization of computational Grid resources using low-level benchmarks. Technical
Report TR-2004-5, Department of Computer Science, University of Cyprus, December 2004. Available at:
http://grid.ucy.ac.cy/reports/TR-04-5.pdf.

50. Tiramo-Ramos A, Tsouloupas G, Dikaiakos MD, Sloot P. Grid resource selection by application benchmarking:
A computational haemodynamics case study. Proceedings of the 5th International Conference on Computational Science
(ICCS 2005), Atlanta, GA, May 2005 (Lecture Notes in Computer Science, vol. 3514). Springer: Berlin, 2005; 22–25.

51. Wolski R, Spring N, Hayes J. The Network Weather Service: A distributed resource performance forecasting service in
metacomputing. Journal of Future Generation Computer Systems 1999; 15(5–6):757–768.

Copyright c© 2006 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2007; 19:89–105
DOI: 10.1002/cpe


	1 INTRODUCTION
	2 BENCHMARKS AND BENCHMARKING
	2.1 Performance benchmarking
	2.2 Dependability benchmarking

	3 THE GRID SETTING
	4 GRID BENCHMARKING CHALLENGES
	4.1 Performance representation
	4.2 Measuring performance
	4.2.1 Choosing the benchmarks
	4.2.2 Measuring a moving target
	4.2.3 Trusting the measurements

	4.3 Metrics interpretation

	5 A BRIEF SURVEY OF CURRENT APPROACHES
	5.1 Benchmarking Grid infrastructures
	5.1.1 NAS Grid Benchmarks
	5.1.2 Grid Assessment Probes

	5.2 Benchmarking Grid services
	5.3 Benchmarking Grid resources
	5.4 Grid benchmarking tools

	6 CONCLUSIONS

