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Abstract

As Grids rapidly expand in size and complexity, the task of benchmarking and testing, interactive or unattended, quickly becomes unman-
ageable. In this article we describe the difficulties of testing/benchmarking resources in large Grid infrastructures and we present the software
architecture implementation of GridBench, an extensible tool for testing, benchmarking and ranking of Grid resources. We give an overview of
GridBench services and tools, which support the easy definition, invocation and management of tests and benchmarking experiments. We also
show how the tool can be used in the analysis of benchmarking results and how the measurements can be used to complement the information
provided by Grid Information Services and used as a basis for resource selection and user-driven resource ranking. In order to illustrate the
usage of the tool, we describe scenarios for using the GridBench framework to perform test/benchmark experiments and analyze the results.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Grids have emerged as wide-scale, distributed infrastructures
that comprise heterogeneous computing and storage resources,
and support resource-sharing in growing dynamic infrastruc-
ture. Grids are quickly gaining popularity, especially in the
scientific sector, where projects like EGEE (Enabling Grids
for E-sciencE) and the Open Science Grid provide the infras-
tructure that accommodates large experiments with thousands
of scientists, tens of thousands of computers, and petabytes
of storage [9,16]. As an example, at the time of this writing,
EGEE assembles over 200 sites around the world with more
than 30,000 CPUs and about 5 PB of storage, supporting over
80 Virtual Organizations and an increasing number of large-
scale applications from a variety of disciplines resulting to an
average of 10,000 concurrent jobs [9].

An important issue faced by users of large-scale Grids is the
selection of the specific set of resources upon which to dispatch
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a Grid job. In state-of-the-art Grid infrastructures, resource se-
lection is based on the matchmaking approach introduced by
the Condor project [19] adapted to multi-domain environments
and Globus; it has been extended to cover aspects such as data
access and workflow computations, interactive Grid comput-
ing, and multi-platform interoperability [2,14]. Matchmaking
produces a ranked list of resources that are compatible to sub-
mitted resource requests.

In current Grid systems, resource selection and ranking de-
cisions are typically based on a combination of static and dy-
namic monitoring information regarding the number of CPUs
of each resource, their nominal speed, the nominal size of main
memory, the number of free CPUs, available bandwidth, etc.
This information is retrieved from Grid Information Services
like the Monitoring and Discovery System of Globus [6] or
R-GMA [5]. This approach works well in cases where the main
consideration of end-users is to allocate sufficient number of
idle CPUs in order to achieve a high job-submission throughput
with opportunistic scheduling [18].

In several scenarios, however, reliance to simple matchmak-
ing is not enough: practical experience from the operations of
production Grid facilities like CrossGrid [11] and EGEE [9]
has shown that many users wish to select and rank the resources
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upon which to dispatch their jobs, adapting the selection cri-
teria to their preferences in a dynamic and interactive manner;
also, that VO operators want to audit the delivered performance,
the availability, and the configuration status of their providers’
computing resources in an end-to-end fashion. In such cases,
the information published by resource providers and Grid mon-
itoring systems is not of sufficient detail, scope, and accuracy.
Grid users need, instead, the capability to define and configure
on-demand various kinds of tests, tailored to the structure and
the characteristics of individual resources and to their applica-
tion requirements. Grid users need also the capability to easily
administer such tests and to analyze test results in an interactive
fashion.

However, inherent characteristics of Grids, like the virtual-
ization of resources, the layered structure of the Grid archi-
tecture, and resource heterogeneity, render the development of
a reliable, interactive performance exploration environment a
challenging task. To address this challenge, we designed and
implemented GridBench, a modular software system that en-
ables the performance exploration of large-scale Grids in an
interactive manner. GridBench supports the definition, deploy-
ment and execution of parameterized tests and benchmarks on
the Grid, while at the same time allowing for the validation,
archival, retrieval, and analysis of test results.

In this paper, we describe the architecture and functionality
of the GridBench framework. Also, we present the mechanisms
that GridBench has for supporting the interactive, user-driven
ranking of Grid resources with user-specified metrics, custom
ranking functions and ranking models. Finally, we demonstrate
the use of GridBench for the effective selection and ranking of
resources belonging to EGEE, the European production Grid
[9]. The remaining of this paper is organized as follows: in
Section 2, we provide an overview of the main challenges that
need to be addressed in order to support interactive resource
selection and ranking of Grid resources. Also, we present the
main decisions that we adopted in the design and implementa-
tion of GridBench to address those challenges. In Section 3, we
describe GBDL, the XML schema that we designed to define
and automate tests conducted with GridBench; we use GBDL
to support the storage and integration of performance measure-
ments, configuration parameters, and monitoring information
that are required for the proper evaluation of test results. Sec-
tion 4 describes in more detail three main components of the
GridBench system: the GridBench Controller, the GridBench
Browser, and the GridBench Crawler. In Section 5, we describe
the GridBench Ranking Module. A number of use-case scenar-
ios involving real infrastructures and applications are presented
in Section 6. In Section 7 we provide a summary of related
work and we finish off in Section 8 with conclusions and future
work.

2. GridBench design considerations

2.1. The Grid context

In this work, we assume a Grid infrastructure consisting of
a set of geographically distributed, heterogeneous Grid sites

connected over a shared network (e.g. the Internet) and support-
ing several Virtual Organizations. In Fig. 1, we present a model
of this infrastructure, inspired by the architecture of large-scale
Grid testbeds such as EGEE [9]. A Grid site comprises a cluster
of worker nodes (WN), which are typically off-the-shelf PCs
or server-class machines, interconnected via a high-speed local
area network. Access to a Grid site is provided through a com-
puting element (CE), a node that hosts the site’s job submission,
queuing, VO management and accounting capabilities. Typi-
cally, a site also comprises a storage element (SE), which is
an interface to mass storage. Each site also hosts a monitoring
agent (MA), which collects information from local operating
systems, configuration files and cluster-management systems,
and publishes it through a Grid-wide Information Service.

A user can initiate Grid-job submission through a user in-
terface (UI) machine, which hosts the necessary middleware
components and services, and serves as user gateway to the
Grid. To this end, the user needs to have proper security cre-
dentials and be a member of a supported Virtual Organization.
VO membership specifies the resources that will be assigned
to user jobs, according to the access rights and usage policies
that CEs apply for the various VOs.

2.2. Key challenges

To support the selection and ranking of resources using con-
figurable on-demand tests in the context described above, we
need to address a number of challenges that arise from the in-
herent characteristics of Grids (an extensive discussion on these
challenges can be found in [7]).

Scale and complexity: The multi-layered structure of Grids
suggests that the observed performance of Grid resources is
affected by several factors: (i) the capacity of local Grid sites
and inter-connecting networks; (ii) the performance and over-
head of libraries and services providing Grid applications with
support for communication, synchronization, bulk data trans-
fer, database querying, and other higher-level Grid program-
ming abstractions; (iii) the performance and overhead of Grid
services supporting job submission and management, such as
workload management systems, resource brokers, and Grid In-
formation Services, and (iv) the reliability and robustness of
Grid middleware and services.

Therefore, the selection and ranking of Grid resources needs
to address the numerous observable aspects of the Grid architec-
ture that affect the functionality and performance of resources.
Administering such tests, collecting and interpreting measure-
ments on large-scale Grids can be a tedious, time-consuming,
and costly process, especially if one needs to evaluate a sub-
stantial fraction of available resources distributed across mul-
tiple administrative domains.

Volatility: With too many organizations, sites, and resources
participating in a Grid infrastructure, the infrastructure is
typically in a continuous change as different sites add or
withdraw resources, conduct hardware or software upgrades,
re-configure their hardware or middleware, suspend their oper-
ation due to failures, etc. Additional sources of volatility are the
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Fig. 1. A typical Grid architecture.

open wide-area networks, which are used to interconnect Grid
sites and which are shared with millions of Internet users, and
the access policies that some Grid sites apply, allowing the dy-
namic co-allocation of multiple Grid jobs on the same Worker
Node (time-sharing instead of space-sharing). Grid volatility
can have non-trivial effects on the consistency of the perfor-
mance delivered to users by Grid resources; it complicates
testing and evaluation of Grids since measurements can be
irrelevant or soon become out-dated.

Heterogeneity: Typically, different sites of a Grid infrastruc-
ture host resources that differ in architecture, configuration,
performance capacity, etc. Often, even the clusters of individ-
ual Grid sites are non-homogeneous. Resource testing has to
be adapted to the attributes of individual Grid resources to
provide meaningful measurements. Also, the derived measure-
ments should expose the levels and the impact of heterogeneity
to the service that end-users get from the Grid [12,20].

Virtualization: One of the key goals of Grid Computing
is the virtualization of distributed resources. Virtualization,
combined with the open nature of Grids and the lack of
central administrative control therein, complicates the inter-
pretation of test measurements and the reliability of derived
conclusions. For instance, many CEs support several job
queues, with each queue providing access to a potentially differ-
ent type of hardware or software and possibly serving a different

VO. Consequently, users belonging to different VOs may have
a totally different view of the infrastructure’s performance.

2.3. Main design concepts

In view of the challenges described above, Grid resource
selection tools should be designed to address the following key
concerns:

• The minimization of the testing effort; this can be achieved
by adopting user-friendly interaction paradigms and imple-
menting automation mechanisms for the administration of
tests and the analysis of measurements. Also, by providing
standardized and widely accepted tests that can be easily
configured according to the specific characteristics of Grid
resources and user preferences.

• The annotation of measurements with experimentation meta-
data, which represent various conditions under which the
corresponding experiments were carried. Annotation is im-
portant in order to: (i) help in exposing the effects that Grid
virtualization has on derived measurements; (ii) enable the
identification and filtering of irrelevant or invalid measure-
ments; (iii) identify the presence of heterogeneity and expose
its effects.
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• The mapping of raw measurements of Grid resources to
higher-level metrics that characterize Grid resources at a
level of abstraction that is closer to the end-users’ view of
the Grid.

To address these concerns and to provide an interactive re-
source exploration framework, we designed GridBench along
the following axes:

End-to-end testing: GridBench follows an end-to-end ap-
proach in the deployment and execution of tests. Tests are per-
formed using the exact same mechanisms as regular Grid jobs
and are subject to the very same limitations and treatment. The
outcome of end-to-end testing represents the performance and
functionality of Grid resources as it is experienced by Grid
users, taking into account the effects of virtualization.

Functional testing and benchmarking: GridBench supports
functional testing and benchmarking of Grid resources. The
former, comprises the execution of small probes or queries
to obtain functionality and availability information about Grid
resources. Information extracted from functional testing is used

Fig. 2. The GridBench Suite of benchmarks.

Fig. 3. GridBench component communication.

to update, complement or validate information published in
Grid Information Services, to test the operational status of local
resource managers, and to configure performance benchmarks
with the right set of parameters. Benchmarking employs well-
understood instrumented codes that investigate the performance
behavior of Grid entities belonging to different layers of the
Grid architecture of Fig. 1.

Performance benchmarks: GridBench provides a pre-
selected layered suite of widely acceptable and portable bench-
marks that provide a thorough and concise characterization
of Grid-resource performance and whose open deployment
and use are not restricted by intellectual property rights (see
Fig. 2). This suite comprises: (i) Micro-benchmarks for stress-
testing and measuring the performance of some Grid entity in
isolation. (ii) Micro-kernels, for measuring the performance of
some composite Grid entity under some synthetic workload,
designed to stress-test simultaneously several aspects of the
Grid entity’s performance. (iii) Application kernels and Grid
applications used to investigate the performance of some Grid
entity (i.e., a WN or site). The tool is flexible and extensible
enough to accommodate most types of benchmarks, targetting
a single resource, or benchmarks of a distributed nature (such
as the GB_FTB GridFTP data-transfer benchmark). Never-
theless, benchmarking of Grid services (such as stress-testing
resource brokers by applying different workloads), or mea-
suring the capacity of wide-area network connectivity falls
outside the scope of this paper. Tools that can be used in such
situations are briefly outlined in Section 7.

A detailed list of the benchmarks integrated in the GridBench
suite and used for the performance exploration of Grid testbeds
like CrossGrid and EGEE is given in [23].

Client–server architecture: GridBench is designed as a
client–server system (see Fig. 3) primarily in order to enable
the sharing of measurements between different users. This
architecture also enables the operation of the system from per-
sonal computers without the need to have special middleware
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installed or to bypass firewalls. The GridBench server is im-
plemented as a set of Web-services installed on a UI-machine
that is configured to access remote Grid Sites using Grid pro-
tocols. The GridBench client can be executed as a stand-alone
application, a Java applet, or a plugin to virtual desktops like
the CrossGrid Migrating Desktop [13].

GridBench metadata: Grid resource selection and ranking
requires the retrieval, integration and processing of quantita-
tive information from several sources. These sources differ in
their access mechanisms, timing, protocols, and schemas used
to produce and publish their data. To derive a performance
measurement, GridBench actively submits for execution a Grid
job carrying an instrumented benchmark that is selected and
configured to measure a specific aspect of some resource. This
benchmark is deployed through the Grid on the resource under
investigation.

To make GridBench operations easily configurable and to
enable the integration of test results with experimentation meta-
data (configuration values, resource load information, etc.), we
define a common way of specifying the various operations
launched by GridBench and the parameters thereof, by intro-
ducing the XML-schema-based GridBench definition language
(GBDL) described in the following section.

3. The GridBench definition language

3.1. Scope

GBDL documents drive the operations of the GridBench
Controller and its interactions with other components and
services. Furthermore, GBDL is used to represent raw mea-
surements derived from GridBench tests, and to annotate those
measurements with metadata necessary for the processing,
aggregation, and interpretation of metrics. Communication
between GridBench components is performed through the
exchange of GBDL documents (see Fig. 3). GBDL documents
are stored in the GridBench Archiver.

A complete GBDL document includes the definition of a
test or benchmark invocation with specific parameters, the
target resources under testing, a time-stamp of the experiment
undertaken, the status of the target machines during execu-
tion as captured by monitoring systems, and the resulting
metrics.

3.2. Syntax

A high-level structure of GBDL documents is presented
in Fig. 4(a). According to the GBDL syntax, the top-level
XML element in a GBDL document is the 〈testmark〉.
〈testmark〉 elements assemble all information that is related
to a GridBench experiment and contain the set of other XML
elements shown schematically in the tree-structure of Fig.
4(a). An example of a GBDL definition is given in Fig. 4(b).
The elements on the left side of the tree-structure of Fig. 4(a)
(parameter, credential, resource, monitor, memo,
testmark, and constraint) specify the configuration of
a test, i.e., the operations that need to be undertaken in order

to launch a test and derive meaningful measurements. The
elements on the right (info, metrics, log, and status
entries) correspond to information produced or retrieved dur-
ing the execution of a test on a Grid; this information is
embedded in the document during and upon completion of the
execution.

The 〈credential〉 element carries the credentials of the user
submitting a test to a Grid, such an x509 proxy certificate,
in hexadecimal form. The 〈parameter〉 element enables the
definition of any parameters that GridBench needs to pass
to the underlying middleware or to the testing codes. GBDL
currently supports two types of parameter elements: (i)
conf parameters are middleware-specific and act as direc-
tives to the underlying middleware in order to configure the
submission of a test as a Grid job. (ii) user parameters are
test-specific and initialize the input parameters of the test
executable.

The 〈resource〉 element specifies the resources that are tar-
geted by the enclosing 〈testmark〉. For example, this ele-
ment can define the name of a Grid site, the number of CPUs
to be requested from that site, and how the CPUs should be
distributed on that site’s WN. To this end, the element has three
associated attributes: cpucount, wncount, and name. The
GridBench Controller extracts information from the contents
and attributes of the 〈resource〉 element in order to config-
ure accordingly the job submitted for execution through the Job
Submission Service.

The 〈monitor〉 element provides directives on what to
monitor during benchmark execution. It can contain a mon-
itoring system-dependent query and a specification of the
monitoring system that will execute this query. The contents
of a 〈monitor〉 element are interpreted and executed by a
corresponding plugin of the GridBench Controller.

Measurements derived from GridBench experiments are
represented as the 〈metric〉 element of GBDL. This ele-
ment accepts a node attribute, associating the represented
measurement with the name of the resource under measure-
ment, and a name attribute, which specifies the type of the
measurement. Nested inside 〈metric〉 is the 〈value〉 ele-
ment, which encodes the actual values of a measurement. The
following is an example from the “flops” micro-benchmark. It
shows the “MFLOPS(1)” metric (623.5 MFlop/s) measured on
the wn113.grid.ucy.ac.cy Worker Node.:

<metric node="wn113.grid.ucy.ac.cy" name="MFLOPS(1)">
<value unit="MFLOP/s">623.5426</value>

</metric>

Some results are in the form of vectors rather than single scalar
metric values. For example, the cache benchmark produces a
series of values that state the memory bandwidth using arrays
of progressively larger size:

<metric node="wn113.grid.ucy.ac.cy"
name="cache-write">
<vector name="size">
256 384 512 768 ... 134217728</vector>
<vector name="bandwidth">
1999.2 2202.2 2328.6 ... 488.5</vector>

</metric>
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testmark

parameter

credential

resource

monitor

memo

testmark

constraint

status

log

metric

info

0..∗

0..1

0..∗

0..∗

0..∗

0..∗

0..∗

0..∗

0..∗

1

1

<testm arknam e="flops"

xm lns="http://gridbench.ucy.org/definition"

id="1135002331003036000"

tstart=""duration=""node=""

validate="no">

<param eternam e="RB"

type="conf">rb101.grid.ucy.ac.cy</param eter>

<param eternam e="loops"

type="user">100</param eter>

<resourcenam e="ce101.grid.ucy.ac.cy"

cpucount="2"

w ncount="2"/>

</testm ark>

Fig. 4. (a) A schematic overview of GBDL. Shown in rounded boxes are the main parts of a GBDL document. (b) A real example of GBDL definition,
showing a flops micro-benchmark definition configured to run using two CPUs on two separate worker-nodes at ce101.grid.ucy.ac.cy.

It is worth noting that, according to the GBDL syntax, a
〈testmark〉 element may contain other nested 〈testmark〉
elements. The combination of nesting with 〈constraint〉
elements allows for the definition of tests of arbitrary com-
plexity, such as workflow-like benchmarks. The 〈constraint〉
element accepts a type attribute, which is used to distin-
guish between corequisite and prerequisite con-
straints, and a wfref attribute, which is used to point to
an associated 〈testmark〉 component. A corequisite
constraint means that the 〈testmark〉 containing this con-
straint should be started after the test specified by wfref has
started its execution. A prerequisite constraint means
that the testmark containing this constraint should be started
after the termination of the execution of the testmark specified
by wfref.

The GBDL syntax provides also a number of elements that
can be used to encode and represent additional semi-structured
information that is useful for the visualization and analysis of
GridBench measurements. The 〈memo〉 element holds a short
description of the test defined by the enclosing testmark. The
〈info〉 element assembles information about the characteris-
tics of resources under testing in terms of name-value pairs.
For example, a testmark running on dual AMD Opteron worker
node would contain:

<info name="cpu_model" value="AMD Opteron(tm)
Processor 246"/>
<info name="cpu_count" value="2"/>

The 〈log〉 elements are used for keeping the history of a spe-
cific testmark execution in the form of entries that log-specific
activities of GridBench components during GridBench experi-
mentation. These entries are inserted by the GridBench compo-
nents (identified in the origin attribute) as they process the
GBDL document. For example:

<log time="113500233"
origin="Controller">Request received.</log>
<log time="113500235"
origin="LCG-plugin">Job submitted to RB.</log>

Finally, the 〈status〉 element reflects the current status of
execution of a test. It can take the values of pending, failed,
done, warn and valid. When the GBDL definition is first cre-
ated, the value of this tag is set to pending. Upon successful
completion the value is set to done, and in the case of a failed
test the value is set to failed. When the test finishes success-
fully and the validate attribute is set to yes, the output of the
test will be validated for correctness. Validation of the result
of a test, is performed by invoking a script based on a naming
convention. Depending on the outcome of the script the con-
tent of the <status> element will be updated to warn or valid
accordingly.

4. GridBench system design

GridBench employs a client–server architecture using Web-
services. The GridBench server comprises: (i) the GridBench
Controller, which manages the testing process by interacting
with Job Submission Services, Resource Brokers, and Grid
Information Services, (ii) the Crawler, which automates the
performance exploration of a whole infrastructure, and (iii)
the Archiver, which undertakes the storage, management,
and provision of test templates and of derived measurements
(Fig. 5).

The GridBench client comprises: (i) the GridBench Browser,
which provides a graphical framework through which an end-
user can visualize the status of Grid resources, and interact
with GridBench; (ii) a Configuration Module, which supports
the interactive configuration of GridBench tests, (iii) an Anal-
ysis Module, which supports the processing, visualization and
interactive manipulation of collected metrics; and (iv) the
SiteRank, which implements the models used to rank Grid
resources.

GridBench is implemented in Java and Tomcat. The tool
has been designed with extensibility in mind, both in terms
of easy integration of new tests and benchmarks and in terms
of integration with new middleware. The system design is
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Fig. 5. GridBench components.

GB Client Controller Middleware Plugin Test/Benchmark Archiver Monitor Plugin

1. GBDL
2. GBDL

3. job description

6. Submit
6. Submit

7. Poll until
(status!=done)

8. Result

9. Archive

stop monitorning

4. start monitorning

5. Mon.
Data

Fig. 6. A UML sequence diagram describing the basic Controller functionality.

modular and makes extensive use of plug-ins to provide inte-
gration with various middleware.

4.1. Server-side components

4.1.1. The GridBench controller Web-service
The Controller component has the task of managing test and

benchmark executions. Most of the Controller’s functionality
is implemented in the form of middleware plugins.

The diagram in Fig. 6 describes the Controller functional-
ity in a series of steps. The steps are given below (the num-
bers correspond to the numbered arrows in the UML diagram):
(1) The Controller receives a benchmark description in the
form of GBDL. This will originate from the Client or the
Crawler; (2,3) The Middleware Plugin translates the GBDL to a
middleware-specific job description, which is in the syntax and
format required by the underlying middleware; (4) The Con-
troller determines all monitoring that needs to be performed,
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Fig. 7. Left: Middleware plugin functionality. Right: Monitor plugin functionality.

which is specified by the monitor elements of the GBDL. Using
the type and query attributes of the monitor, the correct monitor-
ing plugin is invoked. (5) Monitoring data collection is started.
In the event where the test or benchmark is put in the target-
resource’s local queue, synchronization of monitoring data col-
lection and the actual benchmark execution is performed by
job-status monitoring. Depending on the type of monitoring,
steps 4 and 5 may come after step 6; (6) The benchmark job is
then submitted using the Middleware plugin; (7) The job status
is monitored by polling until the job finishes; (8) The results
of the benchmark in the form of metric elements and its asso-
ciated monitoring data are incorporated into the GBDL. If the
resource name was not specified explicitly in the test specifica-
tion, the resource element is also updated, indicating the exact
location where the job ran; (9) Finally, the resulting GBDL is
passed to the Archiver, concluding the Controller’s role as it
relates to this specific execution.

Middleware plugins (Fig. 7(a)) allow the GridBench frame-
work to work with different underlying middleware. It is
assumed that the underlying middleware supports basic op-
erations such as copying (staging) files, submitting a job for
execution and retrieving the result. The plugins mainly deal
with (i) job description compilation (e.g. RSL for Globus),
(ii) job submission and job-status monitoring, (iii) file staging
and (iv) result retrieval. Plugins for Globus and the LCG/gLite
middleware are provided in the current implementation.

Monitor plugins (Fig. 7(b)) are connectors to existing moni-
toring systems. They are employed by the Controller to collect
monitoring information during test/benchmark execution. The
user specifies what monitoring data is to be collected, as well
as the start-time and finish-time of data collection. The start
and end-times can be absolute times, or relative to the start
and end-times of the actual test/benchmark execution. Initially,
the GBDL contains a monitoring system-specific query that the
monitoring plugin can interpret and connect to the monitoring
system. In the absence of monitoring systems, the tool allows
the collection of certain system attributes locally on the target
resource (such as CPU-load and swap usage) during execution
of the benchmark job.

The GridBench archiver Web-service: The Archiver allows
the storage and retrieval of results generated by executions
of the GridBench Benchmark Suite through the GridBench
Framework. The Archiver provides a simple interface that

Fig. 8. The list on the left is a list of tests/benchmarks that are integrated
into GridBench. The list on the right shows the currently available resources
and their status in terms of busy/free CPUs.

includes: (i) storing a GBDL document, (ii) retrieving a GBDL
document by it’s ID, and (iii) retrieving a set of results based
on an SQL query. The XML is transformed to relational data,
where elements in the XML become records in the database
tables by a simple mapping.

The GridBench crawler: In many cases it is desirable to have
the system perform tests and simple benchmarks periodically
and make the results available to users. This provides an ini-
tial body of results, which the user can complement with her
own executions. This allows for more meaningful analysis of
the availability and dependability of resources, since the mea-
surements taken by users are generally too sparse to be very
useful in this context. The crawler monitors the Grid Infor-
mation Services for the list of resources and periodically in-
vokes tests on the ones that are available. The crawler runs as
a daemon and needs to be provided with: (i) credentials with
which to invoke tests, (ii) a set of GBDL definitions that are
to be invoked periodically, and (iii) the period with which they
are invoked. Benchmarks and tests submitted by the crawler
are handled by the GridBench Controller as regular benchmark
submissions.
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4.2. Client-side components

4.2.1. The GridBench browser
In order to facilitate interactive, on-demand testing and

benchmarking, GridBench provides a user-friendly graphi-
cal interface that simplifies the definition and execution of
benchmarks and tests, as well as the browsing of results. Ad-
ditionally, it provides tools for result analysis through the easy
construction of custom graphs from archived results. Fig. 8
shows the main graphical UI for the definition of benchmarks,
where we can observe the list of available tests/benchmarks
(the list on the left) and the available resources (the list on
the right). The resource list shows resources retrieved from
one or more Grid Information Systems, with details about
each resource’s composition, such as free/busy CPUs and WN,
dual/single CPU machines, etc. Additionally a set of tests can
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LDAP
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Local

Middleware
Plugin

Controller

QueueTest
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UPDATECE
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Queue

Fig. 9. Information plugin and CE test-plugin functionality.

Fig. 10. (a) Resource browser, showing the state of resources from the EGEE test-bed that “advertise” support for MPI (MPICH run-time environment); (b) the
resource renderer; (c) top: information index sources selection. Middle: querying for specific Virtual Organizations. Bottom: specifying run-time environment
support.

be performed on each resource. In Fig. 8 we can see tests such as
the “Queue”, “QSTAT” and “MPI” tests. Tests involving mul-
tiple sites (e.g. using MPICH-G2) can also be performed. Such
tests are useful for detecting configuration problems as well as
connectivity/firewall issues. More tests (e.g. targeting other lo-
cal queuing systems) can be easily added by implementing CE
test-plugins.

CE test-plugins (Fig. 9) encapsulate invocations of tests in
order to (i) integrate them directly into the GridBench Browser
(shown in Fig. 10(b)), and (ii) provide a level of abstraction
of local job manager systems employed by different Grid sites.
For example, querying for the queue status at a site with a
specific local job manager (such as PBS or LSF) requires a
specifically crafted GBDL. The test-plugin determines the type
of local job manager and based on that, submits the right GBDL
to the site. The test-plugin also updates the status of a test in
the GridBench Browser by updating the 〈status〉 element in the
GBDL, to show whether the test is successful, failed or pending.
CE test-plugins can be added to the browser by implementing
a simple Java interface.

Information plugins (Fig. 9) are used by the GUI to retrieve
information about Grid resources. The information plugin re-
trieves data from Grid Information Systems and populates a
data-structure (CE objects) that holds information about re-
sources. The CE objects contain a subset of the information
specified in the GLUE schema for MDS [1], as well as ad-
ditional information about individual WN (such as state and
number of CPUs in each Worker Node). The CE objects are
then used for rendering resource information on the GUI. The
CE objects are also used to automate the creation of GBDL
definitions, since they contain details on site configuration (e.g.
configuration of CPUs on WN and local queue type).
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Information displayed in the resource browser (Fig. 10(a))
is obtained by querying one or more information systems
(Fig. 10(c)-top). The information for each resource is displayed
in graphical form and contains a rendering of the status of CPUs
and the configuration of CPUs into WN. Fig. 10(b) shows the
resource renderer where (1) is the resource name; (2) is the
local queue type, and (3) shows CPU organization and status;
(4) shows the default queue status; (5) shows a test in progress
(blue); (6) shows a successful test (green); (7) shows a failed
test (red); (8) shows a test not run; (9) shows free/total CPUs;
and (10) shows free/total WNs (updated after the invocation of
the “queue test” CE test-plugin). In the rendering of the status of
the local resource queue, the user’s jobs are shown in a different
color. The different test-plugins and their status are displayed
in real time, enhancing interactivity. The resource browser
allows for multiple selections of resources to act as drop-targets
for invoking a benchmark or test on a set of resources. The

Fig. 11. Benchmark configuration panel.

Fig. 12. Generation of charts from historical data. The result shown is from a memory cache benchmark.

browser allows for the user limit her view based on VO
(Fig. 10(c)-middle), or support of a specific run-time envi-
ronment (Fig. 10(c)-bottom). Defining and executing a test or
benchmark is as easy as dragging a benchmark onto one of the
resources (shown in Fig. 8).

The configuration module: The heterogeneity of resources
sometimes requires that the test is tailored to the specific
resource under test. The tuning may be quite trivial, such as
setting the number of CPUs to be used, or it can be more com-
plex such as setting up several memory or network parameters
to configure a benchmark. The user has the opportunity to tune
test parameters prior to execution via a configuration panel
(Fig. 11). The benchmark configuration panel is a GUI front-
end that customizes a GBDL template document. Namely, the
module allows the tuning of parameters to the benchmark, the
definition of the target resource(s) and the definition of what
is to be monitored during execution.

The analysis module: The user can easily construct graphs as
the ones in the results section by browsing results (metrics) pre-
viously archived in the database (Fig. 12). The interface enables
the user to perform custom queries on the archived results and
to select the results that are relevant and of interest. The user
can then use the metrics included in the results to interactively
build charts. The analysis/graphing module can handle several
metric types and present each metric on an appropriate chart.

5. SiteRank

The GridBench tool provides the SiteRank module that allows
the user to interactively build and employ a ranking model, for
ranking resources. A ranking model consists of filtering, which
is basically the selection of a subset of the results, aggregation,
which is the combination of single metrics into higher-level
metrics and finally, a ranking function (Fig. 13).

Filtering refers to a user selection regarding which metrics
should be taken into account in the ranking process. The user
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selection can be based on any of the following types of filter-
ing: (i) attribute filtering, (ii) monitoring-based filtering and
(iii) filtering based on metric quality. Attribute filtering is
done by specifying an SQL query from within the GridBench
Browser, which allows the user to limit the selected set of mea-
surements to the ones that match certain criteria in the bench-
mark description. For example, the user can limit the selection
to a specific VO or to a specific type of CPU. The user can also
limit results based on the date and time they were obtained, thus
limiting the selection to recent results. Monitoring collected
during each benchmark execution allows the user to inspect the
state of the worker node during the execution, and determine

DB
GridBench
benchmark
results

Ranked list
with relative  
  measures of
performance

Selection

Ranking
Model groupping

Ranking Function

Rank

Aggregate

Filter

Fig. 13. The ranking process.

Fig. 14. The ranking module dialog.

whether to manually exclude measurements that are deemed
not fit. Finally, the user can choose to filter results based on
the quality of the metrics by requiring a minimum number of
execution repetitions or a minimum sample ratio.

Aggregation allows the user to specify a grouping of the se-
lected measurements. The user can specify whether each mea-
surement will count equally, irrespective of which worker node
it was executed on. In this case, the reported metric may be less
representative of the resource as a whole because some WN
may be over-represented. On the other hand, this will tend to be
more representative of what users actually experience once the
resource’s policy is applied. The Aggregation step produces a
set of statistics for each metric: mean, standard-deviation, min,
max, average-deviation and count. During the aggregation step,
the raw metrics are normalized according to configurable base
values; for the experiments presented in this paper, we used as
reference a 3.0 GHz xeon worker node. The aggregation step
is also important for the conversion of vector-type metrics into
scalars so that they can be used in ranking functions. An ex-
ample of a vector-type metric would be the raw MPI round-
trip-time measurements at different packet sizes, which can be
summarized into latency or bandwidth.

Last, but not least, a user can invoke the SiteRank module
of GridBench to specify, customize, and/or invoke a ranking
function that computes a ranking of Grid resources according
to user preferences. For instance, the user can specify the val-
ues (weights) of a set of coefficients, which is combined with a
set of aggregated metrics into a customized linear model for re-
source ranking. This process can be accomplished interactively
through a module of the GridBench Browser (see Fig. 14): the
user chooses experiments from the Analysis Module, selects
the metrics of interest, adds them to a chart, and specifies the
desired metric coefficients. The ranking function is evaluated
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Fig. 15. Mflops4 metric quality indicators.

for each resource that appears in the initial result selection.
The resources are then presented in a ranked order along with
their respective score. More complex models can be specified
programmatically and easily integrated into SiteRank. Besides
the aggregated metrics, ranking models can take into account
the various Quality Metric Indicators computed by GridBench
(see below).

Metric quality: Directly related to the issue of internal
heterogeneity of resources is the issue of the quality of the
obtained measurements. Due to the nature of the underlying
infrastructure, which prohibits targeted measurements of spe-
cific WN, the WN that are actually measured are in fact a
“sample” of what is available at a given resource. This sample,
which in many occasions is not random, follows the policy
that the resource applies to the given user/VO. In order to
have a better idea of how accurate the reported metric is and
how representative the sample is, the tool provides two indica-
tors of metric quality. The first metric quality indicator is the
count, which is the number of measurements that are used in
calculating the reported value of each metric. Fig. 15(a) shows
the count metric quality indicator for the Mflops4 metric. The
second quality indicator is the Sample ratio which reflects
just how representative of the whole resource the currently
available measurements are. Fig. 15(b) shows the sample ratio
metric quality indicator for the Mflops4 metric. This value is a
real number that can range from 0 to 1; it is usually easier for
resources with fewer WN to have a high sample ratio value
since they require fewer measurements. Both metric quality
indicators are subject to the availability of resources and to
the extent to which the resources are busy. In some cases the
quota for a specific VO is used up, which also leads to resource
unavailability.

6. Experiments

The GridBench software has been released for testing and
experimentation, and has been used by application developers
and infrastructure operators on top of production-level, large-
scale Grid infrastructures, such as CrossGrid, GridIreland and
EGEE. In this section, we describe a number of different use-
cases that we demonstrated with GridBench.

6.1. Application performance

In the first scenario, GridBench users are interested in de-
ploying high-performance computing applications on a Grid.
To this end, they seek to explore the relative performance and
scalability of different Grid resources, according to the per-
formance behavior of the computationally intensive kernels of
their applications. To explore this scenario in the context of the
CrossGrid testbed, we used kernels extracted from three real
scientific applications deployed on CrossGrid [11]:

1. High-energy physics ANN training: This kernel is taken from
a parallel Artificial Neural Network training application. The
architecture of the code is based on a client–server model
and the code is loosely coupled [17].

2. Air pollution simulation: The VERTLQ kernel comes from
the STEM-II Eulerian numerical model that is used for the
simulation of air pollutant factors. We have used the parallel
(very tightly coupled) version of the code [15].

3. Blood-flow simulation: The “bstream” kernel is extracted
from a medical application for pre-operative planning of vas-
cular reconstruction. It is a tightly coupled code that involves
blood-flow simulation using a Lattice Boltzmann method in
3-D artery models [21].

One of the primary design goals of GridBench is the easy
inclusion of new tests, benchmarks or kernels. The required
steps are: (i) create a new GBDL description template and add
it to the Archiver database; (ii) create a “parameter handler”
(usually a simple shell script); (iii) optionally instrument the
code of the kernel to generate additional metrics. The following
is the new GBDL description template required to integrate
“bstream” into GridBench:

<testmark name="bstream1_1">
<parameter name="iterations"
type="user">40</parameter>

<parameter name="Reynolds"
type="user">20</parameter>

<parameter name="data_id"
type="user">tube38x40x40</parameter>

</testmark>
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Fig. 16. Results for the parallel Artificial Neural Network training application kernel. The number of CPUs is indicated next to the resource name and the
completion times are sorted (best-performing first).
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completion times are sorted (best-performing first).
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Fig. 18. Results for the “bstream” kernel, showing iteration times on a set of four resources.

This description specifies the iterations, Reynolds and data_id
application-specific parameters. Once this specification is in-
serted into GridBench, the user can invoke it through the Grid-
Bench Browser by dragging the newly created template onto a
set of resources. The general steps taken: (1) retrieve previously
archived results for this kernel; (2) benchmark the resources
for which there are no archived results; (3) compare the results
(Figs. 16–18).

If the user wishes to study the scalability of different Grid
clusters for the particular application of interest, he just has
to invoke the corresponding kernel–benchmark on a subset of

the available resources, using different CPU-count parameters.
The resulting metrics are archived in the database (along with
possibly pre-existing metrics) and made available for analy-
sis. Fig. 16 shows results from the ANN kernel while Fig. 17
shows results from VERTLQ. The results are sorted by comple-
tion time—i.e., best performance—thus effectively providing a
ranking of the resources. The number of CPUs used is indicated
next to the resource name. The user can then make decisions
based on these results and answer questions like “Should I use
4 CPUs or 8 CPUs from site A?”, or “Should I use 4 CPUs
from site A or 6 CPUs from site B?”.
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Fig. 19. Ranking of SE Europe resources by putting more emphasis on CPU or main-memory performance.

If additional metrics are desired, the instrumentation of codes
is application-specific and usually involves trivial modification
of the source code to obtain timings at a high level. In the
case of the “bstream” kernel, the application performs iterations
which are controlled by a main loop. In total, about 10 lines of
code were added in order to time each iteration and output the
following metrics onto the standard output (in addition to the
default “completion time” metric):

<metric name="iteration_times"
node="cluster.ui.sav.sk">
<value unit="s">0.079617 0.079529 0.079511
0.079498 ... 0.094326</value>

</metric>

6.2. User-driven resource ranking

In the second scenario we consider two users, each with a
different application and different requirements in terms of per-
formance. They require a performance-ranked set of resources1

tailored to their needs. User A has an application that heavily
relies on memory performance, while user B has an application
that relies heavily on CPU performance. In terms of low-level
CPU and memory metrics, the tool provides Mflops4 and dhry
for floating-point and integer CPU performance, respectively,
and Triad for main memory performance. Utilizing measure-
ments stored in the archive, each user can interactively con-
struct a ranking function from within the GridBench GUI (see
Fig. 14). Obtaining the right coefficients to determine the
weight of each metric in an application-specific ranking is
described in detail in [25]. For the purpose of this scenario we
assume that the user has some insight as to how the different
low-level metrics relate to the performance of the application
at hand.

User A with a preference on memory performance assigns
higher coefficients for memory and lower coefficients for CPU,

1 The results shown are taken from the EGEE South-East Europe Region.

producing a ranking function RA:

RA = 0.8 · Mflops4mean + 0.2 · dhrymean + 4.0 · Triadmean.

User B, on the other hand, chooses to put more weight on
CPU rather than on memory, producing a different ranking
function RB :

RB = 3.2 · Mflops4mean + 0.8 · dhrymean + 1.0 · Triadmean.

In RA the memory metric is given four times the weight
of the CPU metrics (0.8 + 0.2). The opposite is used in RB .
Fig. 19(a) is the result of ranking function RA, while Fig. 19(b)
is the result of the modified ranking function RB . The resulting
composite performance metric varies considerably; a resource
that ranks eighth in RA, ranks first in RB .

7. Related work

A number of tools proposed in the recent literature focus
on performance monitoring and benchmarking of Grid and
network-centric infrastructures. In contrast to generic infras-
tructure monitoring tools, which typically read, collect, and re-
port machine attributes, performance monitoring refers to the
active invocation of tests and/or workloads for the controlled
measurement of Grid systems. Several performance monitoring
tools have been reported in recent literature. For instance, the
Grid assessment probes system (GRASP) [4], tests and mea-
sures the performance of basic Grid functions such as job sub-
mission, file transfers, and performance of Grid Information
Services. GRASP aims to test basic Grid functionality, so in
that sense it is rather a “testing” than a performance measure-
ment tool. DiPerF is a distributed performance-testing frame-
work that aims to automate service performance evaluation [8],
by providing mechanisms for coordinating a pool of machines
that test a target service. DiPerf collects and aggregates perfor-
mance metrics, and generates performance statistics for service
“fairness” and service throughput. Employing an architecture
similar to DiPerF, the Inca test harness and reporting frame-
work [22] is a system that automates the testing of resources
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and resource data collection, and supports resource verifica-
tion and service-agreement monitoring. Inca comprises a cen-
tral controller and a set of reporters. Additionally, the Inca
framework includes a distributed controller which resides on
the Grid resource (e.g. periodic measurements are handled lo-
cally and need not involve the centralized controller). Inca is
geared towards its underlying Grid infrastructure and employs
middleware-specific tests that assess job-submission, file repli-
cation, accessibility of services, etc.

Infrastructure monitoring tools, like the network weather
service [27] (NWS), can provide useful real-time informa-
tion of several system aspects, including network latency and
bandwidth between distributed Grid resources. Such systems,
however, do not address computational performance of the
monitored resources. For instance, NWS has “CPU sensors”
which provide measurements of CPU “availability.” However,
this is different from benchmarking, as it provides a snapshot
of the “instantaneous” performance capacity of a machine, and
not what can be expected of the machine in terms of per-
formance. NWS is best known for its forecasting capabilities
which are based on past measurements. Last, but not least,
the ALU intensive Grid benchmarks [26] (AIGB) are paper-
and-pencil specifications of reference benchmarks proposed
for measuring the overall performance of Grid infrastructures.
AIGB benchmarks are essentially synthetic applications, syn-
thesized as workflows of traditional benchmarks adopted from
the NAS Parallel Benchmark suite [3].

In contrast to the systems presented above, GridBench em-
phasizes mainly on providing an interactive, user-oriented, and
easily customized environment for end-to-end tests and perfor-
mance measurements of Grid resources. Interactivity is pro-
vided via a powerful graphical UI for specifying tests and for
analyzing results. Customization is supported by an underlying
XML schema, which enables also the virtualization of tests, and
the easy integration of test results with information retrieved
from other (monitoring) sources. In contrast to typical monitor-
ing systems, where measurements are mostly set up by a central
administrator and users can simply review tabular or graphical
representations of measurements, GridBench allows end-users
to easily customize tests, data visualization and analysis accord-
ing to their own requirements. Furthermore, GridBench adopts
an end-to-end approach in testing and benchmarking Grid in-
frastructures; consequently, the deployment and management
of GridBench tests does not require any special software instal-
lations or updates of the middleware. This can be a significant
advantage when testing large-scale, production-rate Grid facil-
ities. Moreover, this approach allows end-users to explore and
understand the effects that resource virtualization has on the
application performance experienced by end-users. In addition
to performance metrics, GridBench provides quality indicators
that can be used to assess the quality of measurements and the
effects of virtualization upon these measurements. Last, but not
least, the collection and organization of test results, metrics,
and quality indicators, facilitates the specification, customiza-
tion, and deployment of different ranking functions that can
rank Grid resources according to individual end-user require-
ments. It is worth noting that the current GridBench deployment

comprises a suite of open-source benchmarks of different gran-
ularity, which measure different aspects of resource perfor-
mance [24]; nevertheless, the extension of this suite is quite
easy and does not require any changes in the underlying mid-
dleware or GridBench installation.

8. Conclusions and future work

We have developed a system that aims to alleviate many
of the complexities of testing and benchmarking large num-
ber of Grid resources. We have provided an overview of the
GridBench tool, which can serve as a “virtual workbench”
for performing test/benchmark experiments easily and interac-
tively. The tool—extensible via plugin mechanisms—allows for
submitting tests and benchmarks, archiving specifications and
results, and serves as an aid for the analysis of the resulting met-
rics. The GridBench tool puts a set of tests, micro-benchmarks
and kernel benchmarks at the users disposal and allows the
easy tuning of the existing tests/benchmarks and the easy ad-
dition of new ones. Users can drag-and-drop tests/benchmarks
onto a graphical and dynamic representation of Grid resources,
get feedback on the progress of execution, keep track of the
quality of the reported metrics, and combine fresh with histor-
ical results into charts, all from the same UI. Though the tool’s
ranking module the user can interactively follow a three-step
process—filter, aggregate, rank—that allows for flexible, user-
driven ranking of resources.

Through the presented use-case scenarios, we have illustrated
the functionality and ease of use of the tool: the first use-case
illustrates how a user or application developer can obtain results
from new application-based benchmarks using the GridBench
framework. In the second use-case we provide a short glimpse
on the functionality of the tool in terms of interactive, user-
driven ranking of resources using ranking functions.

These tasks would simply not be feasible if they had to be
done manually, especially if they had to be done by the end-
user. Users can now use this approach in the search for the
right resources on which to run their application, by testing
and ranking resources by what they consider important in terms
of functionality or performance. Furthermore, users can verify
the “advertised” performance of a resource by running light-
weight benchmarks. Eventually, resource performance informa-
tion will be coupled with resource pricing information. Users
will then be able to “shop around” and pick the right resources,
using simple ranking functions/models that account for pricing
information, in order to influence the matchmaking process is
a way that benefits them.

In this paper’s introduction we have emphasized at least four
challenges that need to be addressed, i.e., Scale and complex-
ity, Volatility, Heterogeneity and Virtualization. GridBench,
by simplifying the process of executing tests and benchmarks
on a large number of resources, as well as the coupling of
definitions, results and metadata, can be used effectively on
infrastructures of a large scale and complexity. The same
functionality allows for easy repeated collection of measure-
ments and associated metadata thus alleviating the problem of
volatility. The end-to-end approach to measuring the system,
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addresses the issues raised by the virtualization and the dif-
ferent views of VOs with respect to the infrastructure. The
heterogeniety of different resources is tackled by (i) using
simple, architecture-independent benchmarks, and (ii) allow-
ing for the tailoring of benchmarks to the specific resource’s
characteristics.

In on-going and future work we are working on approaches
to further automate the SiteRank module so that ranking mod-
els are automatically generated based on results from a given
application. This would eliminate the expertise required from
the user’s side and that ultimately, this would establish relation-
ships between benchmark results and the performance of user
applications, with minimal user involvement.

We are working on addressing the important issues of avail-
ability and performability and the derivation of higher-level
metrics to express “quality features” of Grid infrastructures: ho-
mogeneity, trustworthiness of GIS, health of the infrastructure,
reliability and robustness. We also plan to enrich the GridBench
suite with more benchmarks based on existing Grid applica-
tions. The open Grid services architecture (OGSA) [10] effort
has recently introduced a relevant service—the “Candidate Set
Generator”. This emphasizes the importance of resource selec-
tion and sets the general guidelines for such a service; we plan
to develop a service along these lines. Finally, we are working
on extending the GBDL specification to include constrained
and automatic parameter selection and to include additional
middleware plugins to provide interoperability with more in-
frastructures (such as UNICORE).
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