GRID METADATA LIFETIME CONTROL INACTON

Wei Xing, Rizos Sakellariou, Oscar Corcho, Carole Goble
School of Computer Science

University of Manchester

United Kingdom

wxing@cs.man.ac.uk
rizos@cs.man.ac.uk
ocorcho@cs.man.ac.uk
carole@cs.man.ac.uk

Marios D. Dikaiakos
Department of Computer Science
University of Cyprus, Cyprus
mdd@cs.ucy.ac.cy

Abstract In the Semantic Grid, metadata, as first class citizens, should be maintained up-
to-date in a cost-effective manner. This includes maximising the automation of
different aspects of the metadata lifecycle, managing the evolution and change
of metadata in distributed contexts, and synchronising adequately the evolution
of all these related entities. In this paper, we introduce a semantic model and its
operations which is designed for supporting dynamic metadata management in
Active Ontology (ActOn), a semantic information integration approach for highly
dynamic information sources. Finally, we illustrate the ActOn-based metadata
lifetime control by EGEE examples.

Keywords: Grid, Semantic Model, Active Ontology, Semantic Grid Information Integration,
EGEE

2

1. Introduction

Metadata in most Grid applications and middleware systems are managed
either in an ad-hoc manner or their processing is hard-wired inside the mid-
dleware code. The arbitrary expression and use of knowledge causes Grid
middleware to be more prone to syntactic changes, less (if at all) interoperable,
more dependent on extensive human effort for deployment configuration and
maintenance, and less shareable. This seriously hampers the progress towards
flexible, adaptable and interoperable Grid infrastructures [6]. The Semantic
Grid proposes to address this problem by constructing so-called “metadata
buses” for Grid infrastructures [9, 12, 5]. One role of Semantics is the creation
of machine understandable metadata that will allow the automation of impor-
tant tasks such as service discovery and dynamic composition of workflows.
And subsequently, the management of semantics/metadata of Grid services,
workflows, and datasets on/in Grids.

Grid infrastructures comprise many time-sensitive resources and services
with characteristics that change frequently, at different time-scales. For ex-
ample, the usage of CPU resources and the status of job queues may change
in minutes, the stability of services may change in hours, the metadata about
membership to a virtual organisation (VO) may change in days. Consequently,
one of the main challenges for the management of Grid-metadata arises from
the dynamic nature of the Grid, that is its dynamicity.

To address this challenge, we designed and developed Active Ontology (Ac-
tOn) [12]. ActOn is an ontology-based information model, which extends the
OWL syntax with a set of classes and properties designed to enable: (i) the
lifetime control of dynamic metadata and (ii) the specification of queries that
retrieve dynamic metadata from external information sources; these queries are
embedded into OWL class/instance descriptions [10]. The main idea behind
ActOn is that it allows the association of time-variant elements of an OWL class
with embedded queries that manage the provenance of these elements. ActOn
extends the architectural ideas and techniques that have been proposed in the
context of ontology-based information integration, by supporting the dynamic
selection of information sources selection according to changing information
needs and the state of available information sources. In order to have up-to-
date resource metadata without making continuous update requests, we create
a metadata cache, which works with an on-demand-update policy, so that only
active metadata are aggregated in an efficient and economic manner [13].

In this paper, we describe the ActOn semantic information model and illus-
trate how it can be used to manage dynamic metadata in a large-scale distributed
system. We first describe the syntax and semantics of the ActOn semantic in-
formation model, and the operations of the ActOn system. Then we describe
ActOn’s support for lifetime-control and for on-demand updates of dynamic

Grid Metadata Lifetime Control in ActOn 3

metadata. We also give an EGEE Grid example to illustrate how the semantic
model can be used in a real Grid system [8].

The remainder of the paper is organised as follows: Section 2 gives a high
level overview of the ActOn approach. Section 3 presents the ActOn semantic
model, focusing on its syntax and semantic definition. Section 4 illustrates
how the ActOn semantic model works with lifetime control mechanisms and
updating-on-demanding policy. Finally, Section 5 provides conclusions, and
describes open issues and our planned future work.

2. A High Level Overview of Active Ontology

Active Ontology (ActOn) is designed to support and manage dynamicity in
large-scale distributed systems, using Semantic Web technology. Dynamicity is
a key feature of many large-scale distributed systems, such as Grids; for exam-
ple, the performance capacity of distributed Grid resources and the availability
of software services change dynamically. Consequently, an ontology that de-
scribes a distributed system, like the Core Grid Ontology which represents a
Grid infrastructure [14], should be able to capture the dynamicity of that system.
Nevertheless, OWL ontologies are used to encode static information that does
not change over a long period of time, such as concepts of a domain and the
relationships among these concepts [4]. The standard OWL DL [11]does not
provide the expressive power required to represent time-sensitive properties of
concepts and relationships. Hence, the representation of dynamic information
in an OWL ontology remains a challenge. To address this challenge, we in-
troduced ActOn, an “Active” Ontology that manages dynamic changes of the
instances of a large-scale distributed system ontology.

The idea of ActOn is simple: ActOn allows the dynamic parts of an OWL
class definition to be described by embedded queries, in a way similar to the
AXML proposal [16]. Unlike the traditional assignment of fixed data-type
values to properties of OWL instances, ActOn can assign query objects to
time-variant properties. The query is embedded into an OWL class/instance
definition, so that it can be dynamically executed. Hence, the values of the
time-sensitive properties can be fetched dynamically in order to update the
instances according to the changes that take place.

ActOn provides the means to embed query functions into the definition of
an ontology in order to generate instances of its classes automatically and then
update them dynamically. In principle, an ActOn query can be presented in any
kind of query language even as just a wrapper with a simple UNIX script. This
makes ActOn more flexible and rigorous for maintaining the information about
a dynamic distributed system, such as Grids.

4

3. The ActOn semantic model

The ActOn semantic model is composed of a domain ontology (DO), an
information sources ontology (ISO) and the ActOn Linker. The definition of
the Active Ontology (ActOn) in BNF syntax is as follows:

Active Ontology ::= ’Ontology(’ [domain] ’)’
| ’Ontology(’ [information sources]’)’
| ?ActOn(’{Linker}’)’

cgo: GridComponent

Information sources ontology

infoSrc:InfoService

egee: ComputingElement

infoSrc:BDII

Domain ontology

infoSrc:RGMA

®
oY
)
>,
B\
AN
T\
S
®
]
2

acton: DObject

acton:value lacton:lifetime

| ActOn linker

Figure 1. The ActOn Semantic Model: Domain & Information Source Ontologies and the
ActOn Linker

The domain ontology (DO) provides a framework for representing and cap-
turing the configuration and state of a distributed system. It describes the entities
of a distributed system and their relationships as a set of concepts, relations,
and individuals, which are represented, respectively, as OWL classes, proper-
ties and instances. Entities represented by the DO include hardware resources,
applications, software components, services, etc. For example, in the DO of
the EGEE Grid, the ComputingElement class represents the concept of a Grid
component that provides access to computing resources (CPUs). The details
of this definition can be found in [14]. We will use this class as an example to
illustrate the ActOn syntax and semantics later. Different distributed systems
may have different ontologies, which can be loaded into ActOn. This makes
ActOn an architecture-independent approach for building semantic-based Grid
information services [7].

Grid Metadata Lifetime Control in ActOn 5

The ISO defines the classes and properties of information sources, that is,
network-enabled entities providing information about the configuration and
state of DO elements. Different types of information sources are described as
subclasses of a generic InfoSrc class. For example, BDII is an information ser-
vice of the EGEE Grid infrastructure that provides information about available
hardware resources such as computing power (e.g., CPUs). Therefore, in ISO,
we define the BDII class as a subclass of InfoSrc. The details of the EGEE
ISO ontology can be found in [2]. Specific information-source entities are, in
essence, instances of the architecture-specific subclasses of InfoSrc. These in-
stances can be created either manually, by an ontology editor like Protégé [15],
or automatically, by the ActOn instances generator service (described in [12]).

The role of the Linker is enable the management of dynamically changing
metadata expressed in OWL. To this end, the Linker links the two ontologies
(DO and ISO) together, as shown in Figure 1. The Linker holds and manages
ActOn DObject’s, which contain lifetime information about metadata and the
embedded queries for retrieving dynamic metadata updates. The key idea of
ActOn s thatitembeds a query into an OWL entity in order to adapt dynamically
the part of the entity that changes with time. The ActOn Linker generates a list
of queries for execution by managing the list of DObject’s that are stored in its
database. We will describe the DObject in detail in the next section.

We separate the domain ontology and the information sources ontology in
ActOn for two reasons: (i) To make ActOn flexible and extensible. Thanks to
this separation, ActOn can easily retrieve metadata from a variety of external
information sources, which can change dynamically and which are typically
heterogeneous, geographically distributed, and under different administrative
domains. (ii) To Support dynamic management. Dynamic changes will be both
in DO and ISO, however in different aspects and frequency. The separation will
make the dynamic changes in one ontology not affect the other. For instance,
the change of the information sources ontology, such as to add or remove an
information source, will not affect the definition of the domain ontology as
the definition of the instance in a domain ontology is not fixed with a specific
instance in the information ontology.

3.1 The ActOn Dynamic Object

In order to represent and manage OWL properties that change dynamically
(dynamic properties), we introduce the DObject class. Every dynamic property
of a DO class instance is assigned a DObject instance, instead of a statically
given value. An instance of the DObject class captures the information about
the time-stamp of the actual metadata value wrapped inside the DObject in-
stance at hand and the embedded query used to retrieve that value from some
information source (see Figure 1). For example, the ComputerElement class

6

has a dynamic property freeCPU; the value of that property is an instance of the
DObiject class, which contains a query for retrieving the value of the property
freeCPU, the integer value of freeCPU, and the lifetime of that value.

By an instance of DODbject, the value of the dynamic property of instances of
a OWL class can actually be represented as a triple set, which are an embedded
query, a value, and the lifetime of the value. So that the value can be updated
based on its lifetime by executing the query dynamically.

As the formalism definition of the DObject in DL in (1) below, an ActOn
DObject is an OWL class that is defined by OWL property constraints, which
includes: i) the hasID property: it identifies an instance of the DObject. The
haslID property is an OWL object property, whose range is UnilD class of the
ActOn ontologys; ii) the value property: it contains a value of the corresponding
dynamic property at a specified time period (i.e., lifetime). Itis a datatype prop-
erty, and its range is xsd:int (XML Schema datatype) [10, 3]; iii) the timestamp
property: it is used to label the current time of the value of a dynamic property
assigned, which in turn can be used to calculate the lifetime of the dynamic
property. It is also a datatype property. The range of the property is xsd:time;
The iv) the queryType property: it describes the embedded query that can be
used to get an instance of a suitable information source in a ISO. The query-
Type property is an object property and its range is iso:InfoSrc; finally v) the
condition property: it gives restrictions to the query, which allows to specify
the query parameters. It is a datatype property and the range is xsd:string.

DObject 3 hasID UnilD
3 value xsd:int
3 timestamp xsd:time (1)
3 queryType iso:InfoSrc
3 acton:condition xsd:string

The UnilD class is used to identify an instance of DObject. It is a pair (Enti-
tyID, PropertyID), where EntityID to identify a class in a (DO), for example,
ComputerElement in the EGEE domain ontology. The propertyID indicates
an ActOn dynamic property, such as freeCPU in the example. The formalism
definition of UnilD in Description Logic is as follows:

UnilD 3 hasID (EntityID U ProeprtyID)

Furthermore, three ActOn properties are defined in ActOn for DODbject de-
scription, which are:

= The queryType property is an OWL Object property which points to the
Class(InfoSource) in ISO. Its syntax in BNF can be:

Grid Metadata Lifetime Control in ActOn 7

queryType ::= ’0ObjectProperty(’individualvaluePropertyID
{’domain(’D0 ClassID’ ’)’}
{’range(’ ISO ClassID ’)’} ’)’

m The value property is an owl:DatatypeProperty; it is a relation between
an instance of DObject class and XML Schema datatypes. Its syntax in
BNF can be:

value ::= ’DatatypeProperty(’\textbf{datavaluePropertyID
{’domain(’D0 ClassID’ ’)’}
{’range(’ xsd:Int ’)°} ’)°

m The timestamp property is an owl:DatatypeProperty, whose range is
restricted to xsd:time. Its syntax in BNF can be:

timestamp ::= ’DatatypeProperty(’\textbf{datavaluePropertyID

{’domain(’D0 ClassID’ ’)’}
{’range(’ xsd:Time ’)’} ’)’

The above properties are mainly used to describe the dynamic relationships
between the DO classes in ActOn. In the next section, we will show how a
query can be generated from an instance of the DObject class with the properties
in ActOn.

ComputingElement

InfoSource

Housekeeping Service

O cell (format: CE :freeCPU:number:timestamp:BDIlIQuery)
Figure 2. The ActOn Housekeeping service
In addition, as shown in Figure 2, the instances of the DODbject are ac-

tually managed by a housekeeping service [12]. The housekeeping service
creates/deletes/manages cells in order to manage instances of the DObject [6,

8

9]. Each cell is actually an RDF metadata that contains the UnilD of the in-
stance and its lifetime. In more detail, the housekeeping service will create a
cell for an instance of the DObject. The cell keeps the instance of the DOb-
ject alive by managing its lifetime. Besides, a cell maintains a link between
an instance of the DObject and an instance of InfoSrc, so that the update of
the dynamic property can be executed automatically during the lifetime of a
DObject instance.

4. Dynamic Management in ActOn by Examples

In this section, we give an example to illustrate how the DO and ISO can be
linked in ActOn, and how the combination can support dynamic changes in a
large-scale distributed system. In particular, we show how an embedded query
for a particular instance of the ISO can be generated and queried. The example
is a ComputerElement class, which we take from EGEE domain ontology. The
class ComputerElement is defined by four property constraints, which can be
described in Description Logic as follows:

ComputerElement 3 supportVO VO
d requiredService Securitylnfras 3)
dJ requiredService (JobMgt LI Scheduler)
d freeCPU acton:DObject

So, we can describe the class ComputerElement in OWL as follows:

<rdfs :subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#freeCPU"/>
<owl:someValuesFrom rdf:resource="#DObject"/>
</owl:Restriction>
</rdfs :subClassOf>
<rdfs:comment rdf:datatype="&xsd;string"
>computing element</rdfs :comment>

<owl:Class rdf:ID="DObject"™>
<rdfs:subClassOf rdf:resource="#ActOn'"/>
</owl:Class>
By the definition of ComputerElement, the DObject can be in turn specified
as follows:

YV ComputerElement M1 3 middleware.gLite —
DObject 3 hasID UnilD
3 value xsd:int
3 timestamp xsd:time
3 queryType infoSrc:BDII
dJ acton:condition “belongSite”

where: the format of UniID of this DObject in BNF is as follows:
UnilD: :=(CEID: freeCPUID) ;

Grid Metadata Lifetime Control in ActOn 9

So the target information server of this property freeCPU is a BDII server;
the query condition for answering an instance of the BDII server from infor-
mation source ontology (i.e., ISO) is the distance (e.g., property belongSite)
between the instance of the ComputerElement class and the instance of the BDII
class. More precisely, it will search for an instance of the BDII class within the
same site as the instance of ComputerElement class.

Now we turn to the ISO part. We have a class BDII, which is a subclass of
the InfoSource class. It is the class for BDII services in the EGEE infrastruc-
ture. BDII is a information service of glite middleware, which is used in the
EGEE Grid infrastructure to provide information mainly about Grid computing
resources and storage resources. The definition of the BDII class in description
logic is presented as follows:

BDII 3 accessPoint URI
3 accessAPI xsd:String
7 acton:aboutEntity egee:ComputerElement
7 acton:aboutProperty egee:freeCPU
J egee:belongSite xsd:string

As defined in the ComputerElement class, it has the property freeCPU,
which is associated with an ActOn DODbject, as shown in Figure 1. So the values
of freeCPU property is a tuple {unilD, value, timestamp, infoSrc, condition}.
Following this definition, we can generate instances of ComputerElement class.
The example we take is from the EGEE CY-01-KIMON site. In the CY-01-
KIMON Grid node of the EGEE Grid infrastructure [8], we have a computer
element named ce101.grid.ucy.ac.cy. We describe the cel101.grid.ucy.ac.cy in-
stance based on the definition of the ComputerElement class. It supports VOs
and has several required services running on it. It has time a sensitive property
which is assigned to a DObject to the property. Besides giving a value of free
CPU number to freeCPU, we also give information about the lifetime of the
property, the information server may be and its query condition, and a uniform
ID to identify it. We can create an instance of the class ComputerElement
described in OWL as follows:

<owl:Class rdf:ID="BDII">
<rdfs:subClassOf rdf:resource="#InfoSrc"/>
</owl: Class>
<BDII rdf:ID="bdiil01.grid.ucy.ac.cy™
<belongSite xml:lang="en">BGEEUCY</belongSite>
<accessPoint xml:lang="en"
>bdiil0l.grid.ucy.ac.cy:2170</accessPoint>
<accessProtocol xml:lang="en">ldap</accessProtocol>
<schema xml:lang="en">glueSchema</schema>
<dataModel xml:lang="en">ldap</dataModel>
</BDII>

<owl:Class rdf:ID="ComputerElement™>
<rdfs:subClassOf rdf:resource="#GridComponent"/>
<rdfs :subClassOf>

10

<owl:Restriction>
<owl:onProperty rdf:resource="#freeCPU"/>
<owl:someValuesFrom rdf:resource="#DObject"/>
</owl:Restriction>
</rdfs :subClassOf>
</owl: Class>
<ComputerElement rdf:ID="ComputerElement.ce101_ucy"™>
<freeCPU rdf:resource="#DObject_freeCPU_cel01_ucy"/>
</ComputerElement>
<owl: DatatypeProperty rdf:ID="dataModel">
<rdfs:range rdf:resource="&xsd;string"/>
</owl: DatatypeProperty>
<owl:Class rdf:ID="DObject"™>
<rdfs:subClassOf rdf:resource="#ActOn"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#lifetime"/>
<owl:maxCardinality rdf:datatype="&xsd;int">1</owl: maxCardinality>
<fowl:Restriction>
</rdfs :subClassOf>
</owl: Class>
<DObject rdf:ID="DObject_freeCPU_cel101_ucy™>
<lifetime rdf:datatype="&xsd;dateTime"
>2007—10—-02T'12:10:08 </lifetime>
<value rdf:datatype="&xsd;int">123</value>
<belongSite xml:lang="en">BGEEUCY</belongSite>
<hasID rdf:datatype="&xsd;string"
>cel01:freeCPU: 121008 </hasID>
<queryType rdf:resource="#bdiil01.grid.ucy.ac.cy"/>
</DObject>

From the above description, we can have the exact values of the DObject for
the instance (cel01.grid.ucy.ac.cy) of ComputerElement class. The UnilD of
this DObject is ce101.grid.ucy.ac.cy, freeCPU, bdiil01.grid.ucy.ac.cy, CY-01-
KIMON, where

s CEID is cel0Ol.grid.ucy.ac.cy
freeCPUID is rdf:ID="freeCPU"

QueryBDII is an BDII server that is bdii101.grid.ucy.ac.cy
the site name is “CY-01-KIMON”

Also, the value of the available CPU number is 123, and its time stamp is
2007-10-02T12:10:08.
The above information can then be used to generate a LDAP based search

query as follows:

Idapsearch ldap://bdiil01.grid.ucy.ac.cy:2170 —b mds—vo-name=CY-0-KIMON o=grid
’GlueCEName=ce 101 . grid .ucy.ac.cy’ GlueCEStateFreeCPUs

The query can be executed by a BDII wrapper to fetch the value of the number
of free CPU of cel01.grid.ucy.ac.cy of CY-01-KIMON site in EGEE Grid [12].
S. Conclusions and Future work

In this paper, we introduce the ActOn semantic model and illustrate how
the model can be used to deal with the dynamicity in a large-scale distributed

Grid Metadata Lifetime Control in ActOn 11

system by examples from EGEE Grid. The ActOn semantic model can be
suitable for representing metadata about entities and resources in a very dynamic
distributed environment. To address dynamicity, ActOn embeds a query into
the semantic metadata description. This allows the dynamic information to be
updated dynamically according to its lifetime and update policy.

Our future work will focus on the lifetime estimation algorithm. In a very
dynamic distributed system, lifetime of distributed resources and entities is not
always fixed or known in advance. So a proper lifetime estimation can be a key
issue to manage dynamic. We intend to design a lifetime adjustment algorithm
to cope with the Grid environment.

Acknowledgements

This work is supported by the EU FP6 CoreGrid Network of Excellence
(FP6-004265). We also thank other members of the IMG group at Manchester
for their helpful discussions: Paolo Missier, Matthew Horridge, Bijan Parsia.

References

[1] OntoGrid Project. http://www.ontogrid.eu/.
[2] OntoGrid CVS. http://www.ontogrid.eu/ontogrid/downloads.jsp.

[3] Paul V. Biron and Kaiser Permanente and Ashok Malhotra (editors). XML Schema Part
2: Datatypes - W3C Recommendation. W3C Recommendation, October 2004.

[4] Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deborah L. McGuin-
ness, Peter F. Patel-Schneider, and Lynn Andrea Stein. OWL Web Ontology Language
Reference. W3C Recommendation, February 2004.

[5] O. Corcho, P. Alper, P. Missier, S. Bechhofer, and C. Goble. Metadata management:
requirements and architecture. In Proceedings of the 8th IEEE/ACM International Con-
ference on Grid Computing (Grid 2007), pages 97-104.

[6] O. Corcho, P. Alper, 1. Kotsiopoulos, P. Missier, S. Bechhofer, and C. Goble. An
Overview of S-OGSA: A Reference Semantic Grid Architecture. Journal of Web Se-
mantics, 4(2):102-115, 2006.

[7] M. D. Dikaiakos, R. Sakellariou and Y. Ioannidis. Information Services for Large-scale

Grids: A Case for a Grid Search Engines. In Engineering the Grid: status and perspectives,
pages 571-585, American Scientific Publishers, 2006.

[8] Enabling Grids for E-sciencE (EGEE). http://public.eu-egee.org/.

[9] P. Missier, P. Alper, O. Corcho, I. Dunlop, and C. Goble. Requirements and services for

metadata management. /[EEE Internet Computing, 2007.

[10] P.F. Patel-Schneider, P. Hayes, and I. Horrocks. OWL Web Ontology Language Semantics
and Abstract Syntax. World Wide Web Consortium, February 2004.

[11] PF. Patel-Schneider and 1. Horrocks. OWL 1.1 Web Ontology Language Overview. World
Wide Web Consortium, May 2007.

[12] W. Xing, O. Corcho, C. Goble, and M. D. Dikaiakos. Acton: A semantic information
service for EGEE. In Proceedings of the 8th IEEE/ACM International Conference on
Grid Computing (Grid 2007), pages 81-88.

12

[13]

[14]

[15]

[16]

W. Xing, O. Corcho, C. Goble, and M. D. Dikaiakos. Information quality evaluation for
grid information services. In CoreGRID Symposium 2007. In conjunction with EuroPar
2007, pages 165-174.

W. Xing, M. D. Dikaiakos, and R. Sakellariou. A Core Grid Ontology for the Semantic
Grid. In Proceedings of the 6th IEEE International Symposium on Cluster Computing and
the Grid (CCGrid 2006), pages 178—184, Singapore, May 2006. IEEE Computer Society.

The Protégé Ontology Editor and Knowledge Acquisition System
http://protege.stanford.edu/

The Active XML Team. Active XML Primer. http://activexml.net/

