
G-ECLIPSE: A MIDDLEWARE-INDEPENDENT FRAMEWORK
TO ACCESS AND MAINTAIN GRID RESOURCES

Harald Gjermundrod, Nicholas Loulloudes, and Marios D. Dikaiakos
University of Cyprus
PO Box 20537, 75 Kallipoleos Str. 1678 Nicosia, Cyprus
(harald | loulloudes.n | mdd)@cs.ucy.ac.cy

Pawel Wolniewicz and Norbert Meyer
Poznan Supercomputing and Networking Center
61-704 Poznan, ul. Noskowskiego 10, Poland
(pawel.wolniewicz | meyer)@man.poznan.pl

Mathias Stuempert
Forschungszentrum Karlsruhe
Postfach 3640, 76021 Karlsruhe, Germany
mathias.stuempert@iwr.fzk.de

Harald Kornmayer
NEC Laboratories Europe, IT Research Division
Rathausallee 10, D-53757 St. Augustin, Germany
harald.kornmayer@it.neclab.eu

Abstract The g-Eclipse framework provides a general, integrated workbench toolset for
Grid users, operators and developers. Based on the Open Source Eclipse eco
system, it supports scientists to interact with Grid resources independent of
the underlying Grid middleware. Its main objective is to deliver an extensi-
ble framework for different Grid actors, by providing an unified abstraction of
the Grid. The Grid abstraction enables Grid application users to access the Grid
in a desktop-like manner with wizards specific for common use cases; It also
provides a set of visual configuration tools to maintain and configure Grid re-
sources.

Keywords: Grid, Eclipse, g-Eclipse, Grid abstraction, Grid tool, middleware independent

2

1. Introduction
In recent years, Grids have emerged as wide-scale distributed infrastructures

that support the sharing of geographically distributed, heterogeneous comput-
ing and storage resources [8]. Grid middlewares provide the abstraction to
the user to interact with these resources and large efforts are underway by
both academia and industry to build these infrastructures and middlewares.
Scientists can build “Virtual Organizations” on top of these infrastructures to
solve complex problems. Many Grid projects demonstrated the benefit of such
a general infrastructure for scientific and commercial applications. But even
if there is a trend towards interoperable, service-oriented implementations of
Grid-services, currently there are different Grid middleware systems in use.
All of these middleware systems offer the basic services to interact with the
underlying Grid infrastructure, each follows a slightly different approach.

Many of the potential users of the Grid restrain themselves from using the
Grid because of the inherent complexity of Grid technologies. Understanding
the behavior of Grid resources is difficult and the learning curve for newcom-
ers is too steep. Therefore, more user-friendly and intuitive user interfaces
are needed to make the look-and-feel of Grid infrastructures similar to that of
existing computer desktop systems which people are already familiar with.

In this paper, we first present the Grid abstraction that is provided by the
g-Eclipse framework. The g-Eclipse project [4] uses the Eclipse platform
to devise a middleware independent, integrated workbench toolset for Grid
users, operators and developers. The current implementation supports the gLite
[1] middleware while support for the GRIA [6] middleware is currently under-
way. Second, we discuss two GUI-based perspectives, the user and operator
perspectives.

The paper is structured as follows: Section 2 overviews Eclipse and the g-
Eclipse architecture. Section 3 presents the abstraction of the Grid as supported
by the g-Eclipse framework. Section 4 describes a number of tasks that a user
or operator can perform using the g-Eclipse framework. Section 5 concludes.

2. Eclipse and the g-Eclipse Architecture
The Eclipse Platform

The Eclipse framework was initially an integrated development environment
for Java, later it was revised to be an open platform for a wide range of tools.
The central point of the Eclipse architecture and framework is its plug-in ar-
chitecture, a component-based software architecture that leads to a clear and
modular design. Within the Eclipse framework, everything is a plug-in that can
be dynamically added to and removed from the running Eclipse instance.

In the Eclipse world, every plug-in amends the functionality of other plug-
ins. This is achieved by the underlying OSGi [2] framework that defines the

The g-Eclipse Framework 3

dependencies between the different plug-ins, and how and when additional
plug-ins are loaded. In addition, it defines the mechanisms of extension points
and extensions. An extension point allows to plug-in new functionality based
on an abstraction or definition to enhance existing functionality. This way of
building software components leads to an extensible architecture with well-
defined interfaces.
The g-Eclipse Architecture

The g-Eclipse framework provides extensions on top of the Eclipse platform
that respect the common Eclipse guidelines; this means it contains separate
views and editors for different functionalities. These functionalities are carried
out by a set of tools, implemented as component-oriented Eclipse plug-ins that
integrate seamlessly with other views and editors that are integrated in the three
g-Eclipse Perspectives.

Eclipse Platform

Grid
Resource Manager
Core

Resource
Management

UI

gLite Middleware
UI gLite Middleware

Resource Management
Implementation

Grid Authentication
Core

Authentication
UI

VOMS
UI VOMS

Authent.
Impl.

g-Eclipse

Res. Management

Job Management

Figure 1. g-Eclipse architecture.

Due to a lack of space, we only present a part of the g-Eclipse architecture,
which is depicted in Figure 1. The components presented are those that handle
the authentication and user resource access. As can be seen from the figure
there are three levels. The bottom level is the Eclipse platform. The next level
on top of it is a set of middleware independent plugins, that provide the ab-
straction of authentication to the Grid as well as how to access and use Grid
resources. The third level is the middleware-specific plug-ins that implement
interfaces specified in the middleware independent layer. The gLite middle-
ware is shown as an example, but can be replaced by other middlewares.

3. The g-Eclipse Framework
The g-Eclipse framework presents the abstraction of the Grid to its actors

along two dimensions. The first dimension is the role that the actor has with
respect to the Grid. There are three roles that an actor can assume: the role
of a Grid user, a Grid operator, and a Grid application developer. The second
dimension is the level of expertise of the actor. The framework provides mul-

4

tiple interaction methods for using the Grid services, each with different levels
of information and required input from the actor.

3.1 The g-Eclipse Grid Abstraction
The Grid is composed of loosely coupled heterogeneous services that the

actor can access in a variety of interactive methods using various programming
APIs. Complicating this even further is the non trivial task of locating the
correct services and use their interaction methods.

g-Eclipse tries to present a coherent view of all these loosely-coupled ser-
vices. This is accomplished via the higher-level abstractions of a Virtual Or-
ganization and a Grid project, which are supported by the user-interface of
g-Eclipse. The former is a virtual community that an actor belongs to and thus
can use the services it supports. The latter is a structure/placeholder where
information about a Grid interaction sequence is stored.
The Virtual Organization

Some Grid middlewares, like gLite, organize their users and resources into
Virtual Organizations (VO) in order to improve scalability and manageability.
A Grid can group together its actors based on various metrics such as the ac-
tors’ home country or region, whether or not an actor belongs to a specific
experiment or based on the discipline of research of the specific actor. Of
course, an actor can belong to multiple VOs. A site allocates its resources on a
VO basis instead of a per actor basis to improve scalability. Therefore, from a
site’s point of view resources are supplied to VOs and not to individual actors.
A Grid site specifies how its resources are allocated among the various VOs,
and it also determine its local priority scheme, if any, among the VOs.

g-Eclipse supports the VO abstraction, which is a placeholder for an actor
to configure the information required to use a VO that the actor belongs to. In
other words, in order for an actor to use any of the resources belonging to a
Grid, she first may have to authenticate herself using an authentication service,
and then she may need an information service that lists all the resources sup-
ported by the specific VO. In this regard, the VO of g-Eclipse is a placeholder
for the actor to enter the required information necessary to use the resources
of a specific VO that the actor belongs to. This information is stored in the
Eclipse workspace of the actor so it is only necessary to enter this information
once.
The Grid Project

In the Eclipse world, an actor organizes her configuration and files into a
Project. All the interactions that an actor initiates in a specific domain are also
collected into this placeholder. In the Grid domain this is not the case; the actor
has to organize, in an ad-hoc manner, its files and information that the actor
uses for her various Grid tasks. An actor can have multiple research projects

The g-Eclipse Framework 5

that is using resources from different VOs at the same time. It was envisioned
that the information belonging to one research project should be organized
into a Grid project. This project will present the actor with an abstraction
of the Grid that are necessary to perform the work required for the specific
scientific project. In this Grid project the actor specifies which VOs the actor
wants to use for this scientific project. In addition all the files, job descriptions,
connections to Grid storage resources, information about submitted jobs, and
so on are collected into one Grid project.

By providing this abstraction of the Grid in g-Eclipse it is envisioned that
the productivity of the Grid scientist will improve. From the scientist’s point of
view, she gets all the necessary information for one research project collected
in one place. The Grid project can also be viewed as a holder for the current
state of the actor’s interactions with the Grid. In this case, the state can be
stored and then later retrieved when the scientist wants to continue to work
on the research project. As an added benefit the actor can of course work on
multiple open projects at the same time using one common interface.

3.2 The Grid Perspectives
In order to simplify the usage of the Grid for various actor groups, g-Eclipse

defined three perspectives to present a view of the Grid tailored to each of these
actor groups. The groups identified so far are the Grid users, Grid operators,
and Grid developers. The users are scientists that utilize the Grid to conduct
their research by using its computational and storage resources. The opera-
tors administer the resources of local Grid sites. Finally, the Grid developers
develop applications to be run on the Grid. This last perspective will only be
presented in brief in this section (due to space limits) while the functionality
of the other two perspectives will be presented in more detail in later sections.

The three different perspectives share some commonality and as Eclipse is
a flexible platform the actor is free to define its own customized perspective.
A perspective is a set of views, which are windows confined to present or
represent a specific object or set of objects, editors, and multipage editors. The
actor can re-arrange the views in the perspective as well as add and/or delete
views.
Common Views

All the perspectives defined for g-Eclipse have some commonality as they
all interact with the Grid. The Grid project that was presented above has its
own view namely the Grid Projects view and it looks like a file browser that
the actor uses to browse through the items in the project (upper left in Figures
2 – 3). The Glue Information view conveys the static and dynamic information
available from the information systems that the actor has configured in the VO
setup (lower left in Figures 2 – 3). The Properties view is a standard view

6

Figure 2. User perspective Figure 3. Operator perspective

that comes with Eclipse. Its purpose is to be a common view for properties
of a selected object in the other views (center bottom in Figures 2 – 3). The
properties to be displayed and the amount of details are defined by the source
object. An actor has to authenticate herself in order to access Grid resources,
thus all the perspectives also have the Authentication Tokens view. This view
contains a list of all the authentication tokens that the actor has created and
they stay active until the application is closed; the tokens are maintained in
memory only. The center space of the perspectives is used by the editors.
User Perspective

The user perspective provides views for the actor to access the computa-
tional and storage resources provided by the Grid. The Job view (bottom center
in Figure 2) lists the jobs that an actor has submitted to the Grid. In this view
the actor can view the progress of the job and output files are linked to the job.
The actor can also open the Job Details view that displays all the available in-
formation about the job that is selected in the Job view. The Connection view
lists all the connections to local and remote storage resources that the actor
has specified using the connection wizard. A multipage JSDL editor allows an
actor to modify its job descriptions (see center of Figure 2).
Operator Perspective

The operator perspective provides views for an administrator to maintain
her local Grid site. This perspective has a editor, the Batch editor (see center in
Figure 3), which presents a graphical representation of the batch service of a
local Grid site. As a service is selected in the editor, the batch jobs residing on
that service are listed in the Batch Job view (center bottom in Figure 3). In ad-
dition, the perspective also provides the Terminal view where the administrator
can SSH into the various machines to perform maintenance work.
Developer Perspective

The g-Eclipse Framework 7

The developer perspective will not be presented in this paper due to page
limits. It assists Grid application developers in developing and debugging their
applications (i.e. it is a tool to port applications to the Grid).

3.3 Interaction Methods
As mentioned earlier, the second dimension that defines the Grid abstrac-

tion, is the expertise of the actor. Some actors will not need to use all the “bells
and whistles” of the Grid, but want to be guided through the necessary steps
in order to use the resources of the Grid. At the same time, others want to be
able to have access to all the various options. To support the various levels of
expertise of the actors, g-Eclipse provides both wizards and editors, in addition
to cheat sheets, tutorials, and help pages.
Wizards

A wizard is a container for different pages, where each page guides an actor
through the necessary steps to perform a task. By providing a set of wizards,
g-Eclipse lowers the threshold to enter the world of Grids. These wizards will
guide the actor through the first simple steps of using the Grid resources, like
create a Grid project, specify a Grid job, and submit a job.
Editors

In Eclipse, an editor is more than what is normally referred to as an editor.
In Eclipse an editor can be an ordinary document editor (text, xml, etc.) but it
can also be an editor of a model which manipulates a model graphically and
textually. In addition, an editor can be a multipage editor in which the semanti-
cally similar items of a document are manipulated in their own page, hence the
name multipage editor. g-Eclipse takes advantage of this powerful paradigm
by providing editors to create and manipulate workflows, job descriptions, and
even provide a graphical representation of a local Grid site that can be used to
administer the local site.
Cheat Sheets, Tutorials, and Help Pages

In addition to the actual wizards, editors, and views, Eclipse supports cheat
sheets, tutorials, and help pages. All of these are integrated into the same
workbench that the actor uses to interact with the Grid services. There is there-
fore no need to look for the help pages and tutorials on various web pages and
switch between the Grid “tool” and the guidance “tools”.

4. User and Operator Perspective
All the g-Eclipse perspectives consist of a set of plug-ins that combined

provide an abstraction of the Grid and assist the actor in the Grid interaction.
This section presents a number of tasks that a user and operator can perform
using the g-Eclipse framework.

8

4.1 User interaction
The goal of the user perspective is to simplify the procedure for using Grid

resources. This is accomplished by providing an intuitive GUI for a set of
common Grid tasks that a user would normally perform. Using this GUI, a
user is able to create a Grid project for a particular experiment (containing
both data and jobs), use an editor to specify the job particulars, and gain access
to various computational/storage resources.
Creating a Grid project

To create a Grid project, the user simply selects to create a new Grid Project,
which starts a wizard that guides the user through multiple pages. In the first
page, the user specifies the name of the new project and its location within
the filesystem. In the second page, the user is asked to select the VO that this
project will “belong” to. If the user has not specified any VOs yet, she can
provide the required info (contact URLs) to use a VO. Finally, the user can
specify the directory structure she wants for her project, like a folder for Job
Descriptions etc..

At the end of the Grid Project wizard, the user can view her project as shown
in the upper left corner in Figure 2 (the Grid Project view). In addition to
the directory structure that the user specified for the project, a virtual folder
exists with the same name as the VO that this project is defined to use. In
this folder the services that are available to the user from this VO are listed,
like Computing, Storage, and services. The user can browse through these
services to see what is available to her. As it will be explained in Section 4.2
this information is provided by the information service.
JSDL multipage editor

Job Submission Description Language (JSDL) is an open standard devel-
oped by the Open Grid Forum (OGF) [7] envisioned to be a middleware inde-
pendent standard for specifying a Grid job. Providing an open standard allows
a user to take her job description and submit it to any middleware that sup-
ports the standard. In addition, there also exist translators that translate a job
description from JSDL to the description language supported by a specific mid-
dleware. For example the JSLD to JDL (Job Description Language) translator.

g-Eclipse provides a multipage editor to specify and edit JSDL files (see
center of Figure 2). A multipage editor assists the user in editing a document by
grouping together common parts of the document in one tab and also provide
instructions and information about the fields/properties/text that can be edited
in that specific tab. Again, this provides a higher level of abstraction for the
user compared to editing a pure xml file. In addition to simplifying the task
of creating and editing a JSDL file, the JSDL multipage editor also helps in
creating a well-formed-document with a structure that is verified. As a result,
the user is given error messages when she has entered invalid data into fields.

The g-Eclipse Framework 9

Access and use of computation resources
Once the user has created a Grid Project and has specified one or more

job descriptions, the task of submitting jobs to the Grid is simple. The user
selects the job descriptions that she wants to submit to the Grid. Then, from the
context menu of the selected jobs, Submit Job... is selected. This will launch
a wizard where the user is presented with a list of available job submission
services; the user selects one and submits the job.

After a job is submitted it will appear in the Jobs view (see center bottom in
Figure 2). The user can observe the status of the submitted jobs. By clicking
on a job, its properties are displayed in the Properties view (see upper right in
Figure 2). More details can be listed by opening the Job Details view. In this
view the full history of the status changes, the computing element where the
job is scheduled to execute and more are displayed. In case the job should not
complete successfully, the user can use this view to track down where the job
failed and why. After the job is successfully executed, the user can access the
output files from the job through the links to the place on a storage resource
where the files have been placed (as specified in the job’s JSDL).
Access and use of storage resources

In addition to providing easy and intuitive access to computational re-
sources, g-Eclipse also strives to provide access to storage resources in a sim-
ilar fashion. The user of Grid resources would prefer to access the files in a
similar way that she uses on her personal computer. The Grid has a replica
management layer which controls access to files and data. Middlewares use
different storage managers or even support more than one. Different access
methods and protocols are used in order to gain access to these resources and
in order to modify the content stored on these resources. g-Eclipse provides
the user with a consistent ‘look and feel’ to access an abstract storage space.
This provides for a unified view to different types of storage such as Storage
Elements, GridFTP, DPM implementation of GridFTP or Storage Resource
Manager (SRM) resources and local media, such as hard disk and removable
media (CD, DVD, USB memory sticks). In addition to the support for Grid
file systems, g-Eclipse uses the Eclipse File System (EFS) API and, therefore,
any file system which was developed to work with the Eclipse Platform will
automatically work with g-Eclipse.

The Grid is composed of distributed, heterogenous resources. Transferring
data between different nodes involves the use of several tools. In g-Eclipse,
these tools are selected automatically. Scientists and engineers can focus on
their task rather than on which tools to use. The g-Eclipse data management
subsystem hides low level information about file systems. The user deals with
high level operations only – create directory, copy file, remove file, copy di-
rectory etc.. Common user actions such as drag & drop or copy-paste are
supported as well. File transfers that would take a long time can be put into the

10

background to avoid blocking the user interface. Except for a time delay, user
should notice no difference between remote and local file systems.

4.2 Operator interaction
The goal of the operator perspective is to simplify the procedure of moni-

toring and maintaining a local Grid site. This is accomplished by providing an
intuitive GUI for a set of common tasks that an administrator would normally
perform.
Glue Information View

Knowledge of the actual status of Grid resources is essential for the oper-
ation and maintenance of a Grid with distributed resources. Thus, the Grid
operator perspective provides plug-ins to access infrastructure information in
a simple and interactive way. In addition to presenting the information to the
user, it also provides an interface for other plug-ins to use this information. The
information is collected from Grid information services, like the gLite BDII
service, and cached locally. The information is organized in a data structure
that resembles the Glue-schema v1.2 [5] and stored in a common data store so
as it can be easily used by the rest of the plugins. Which information service to
contact and its contact string is configured only once during the configuration
of each of the VO that the user/administrator belongs to.
Local Grid Site Monitoring and Configuration

The monitoring and configuration functionality are provided for batch-based
Grid middleware system. Multiple batch services exist like PBS, SGE, LSF
and a batch service based Grid middleware supports one or more of these batch
service implementations. The batch service is basically the traffic warden for
the jobs that are to be executed on a Grid site. The jobs are placed into a queue
where they wait until it is their time to run on one or more of the computational
resources in the site. As the job executes the batch service polices its progress
and after it has completed performs some clean-up and reports on a successful
execution.

To improve manageability and scalability in batch-based Grids the users
are grouped by belonging to VOs. Hence the local Grid site sets its policies
of how to allocate its resources on a VO-basis rather than on an individual-
user-basis. Jobs are placed into queues depending on the site’s policy and
the VO the job belongs to. The configuration of the queues is therefore of
paramount importance to implement the resource sharing policy of a site. In
addition, the policy of resource allocation may also change over time due to
data challenges, requests from user groups, or organization policy changes.
Therefore a local Grid site administrator frequently needs to modify the setting
of existing queues or delete them in addition to add new queues.

The g-Eclipse Framework 11

In g-Eclipse, we have implemented an abstraction of the local batch service
to convey the current state of the local Grid site to the administrator as well
as to allow the administrator to modify the setting of the batch service. A
batch service wrapper interface has been devised and developed. This interface
provides for the functionality of gathering the current state of the batch service
and also issues commands to modify the current setting of the service. If an
implementation for this interface is provided for a specific batch service type
then all the functionality presented below will be provided.

The batch service editor serves two purposes: depict in an intuitive way the
current state of the available resources and allow to modify the setting of the
resources. Figure 3 illustrates a screen-scrape of the operator perspective. The
batch editor is in the center and it shows the resources (Queues, Computing
Element, Worker Nodes) of the local Grid site in color code depending on their
operational state. For large sites it is also possible to zoom out as to fit all the
resources within the view. If the editor gets too cluttered all the resources are
also listed in the outline view (left in the figure). By selecting a resource either
in the editor or in the outline view, the properties of this resource are displayed
in the the Properties view (bottom). In addition if there are any jobs currently
residing on the selected resource they are also listed in the Batch Service Job
view. From the context menu of the various resources, options to modify the
setting of the selected resource(s) are given.

The operations explained below are usually performed by either typing com-
mands in a terminal or by executing scripts that the administrator has devised
for her site. g-Eclipse provides an intuitive GUI to perform these operations,
hence simplifying and reducing the risk of executing erroneous commands.
Queue Operations The state of a Queue is determined by the state of two
services, hence it has four states. The first service determines if the queue
should accept any new jobs, so the queue can be enabled or disabled. The
second service determines if the queue is transferring jobs from the queue to
be executed on a working node so it is either running or stopped. From the
context menu of one or more selected queue(s), the option is given to change
the state depending on the current state. In addition if a selected queue is
stopped, disabled and contains no batch jobs then the option to delete this
queue is also given.
Computing Element Operations From the editor the only option available
from the context menu is to create a new Queue. By selecting this option a
wizard is launched. In the fist page of the wizard the required properties of the
new queue are specified while on the second page optional properties can be
added if that is desirable.
Worker Node Operations A worker node can be either enabled or disabled
and when it is enabled it may have jobs executing on it. An administrator
can select one or more worker nodes and if they are all enabled then from the

12

context menu the option to disable all of them is given. If they are all disabled
the option to enable them is given in the context menu.
Batch Service Job Operations In the bottom in Figure 3 is the Batch job
view, which lists all the jobs that are residing on a selected resource in the
batch editor. From the context menu of each of the jobs, the administrator has
the option of deleting that specific job. In addition, if the job has not started to
execute (queued) the option to move the job to another queue and/or computing
element is given. By activating the move options a wizard is launched where
the administrator will specify the new queue and/or computing element.

5. Conclusions
In this paper we presented g-Eclipse, a framework for enabling various Grid

actors to access Grid resources in an intuitive and easy way, i.e. by provid-
ing high-level abstraction of the Grid. g-Eclipse relies on the extension point
mechanism of the Eclipse framework and is designed to be a Grid middleware-
independent framework. It is the g-Eclipse vision that if the threshold of using
the vast Grid resources is lowered, then more scientists will use them to fur-
ther the state-of-the art in their respective discipline. In addition, as the task of
providing Grid resources is simplified more institutions will be willing to share
their resources.

Acknowledgments
This work was supported in part by the EU under projects g-Eclipse (#FP6-

2005-IST-034327), CoreGRID (#IST-2002-004265), and the Eclipse founda-
tion. We would also like to thank the member institutions of the g-Eclipse
consortium and all the project members.

References
[1] gLite: Lightweight Middleware for Grid Computing. http://glite.web.cern.ch/glite/.
[2] OSGi Alliance. http://www.osgi.org/.
[3] The Eclipse Project. http://www.eclipse.org/.
[4] The g-Eclipse Project. http://www.geclipse.eu/.
[5] Sergio Andreozzi, Stephen Burke, Laurence Field, Steve Fisher, Balazs Kfinya, Marco

Mambelli, Jennifer M. Schopf, Matt Viljoen, Antony Wilson, GLUE Schema Specifica-
tion, version 1.2, Final Specification - 3 Dec 2005.

[6] GRIA: Service Oriented Collaborations for Industry and Commerce.
http://www.gria.org/.

[7] Ali Anjomshoaa, Fred Brisard, Michel Drescher, Donal Fellows, An Ly, Stephen Mc-
Gough, Darren Pulsipher, Andreas Savva. JSDL Specification, Version 1.0, - 7 Nov. 2005.

[8] I. Foster and C. Kesselman. In I. Foster and C. Kesselman, editors, The Grid: Blueprint
for a New Computing Infrastructure, chapter 4: Concepts and Architecture, pages 37–64.
Elsevier, 2004.

