
c-Eclipse: An Open-Source Management Framework
for Cloud Applications

Chrystalla Sofokleous, Nicholas Loulloudes, Demetris Trihinas,
George Pallis, Marios D. Dikaiakos

Department of Computer Science, University of Cyprus, Nicosia, CY1678, Cyprus
{stalosof, loulloudes.n, trihinas, gpallis, mdd}@cs.ucy.ac.cy

Abstract. Cloud application portability and optimal resource allocation are of
great importance in the realm of Cloud infrastructure provisioning. c-Eclipse is
an open-source Cloud Application Management Framework through which users
are able to define the description, deployment and management phases of their
Cloud applications in a clean and intuitive graphical manner. It is built on top of
the well-established Eclipse platform and it adheres to two highly desirable fea-
tures of Cloud applications: portability and elasticity. In particular, c-Eclipse im-
plements the open, non-proprietary OASIS TOSCA specification for describing
the provision, deployment and re-contextualization of applications across differ-
ent Cloud infrastructures, thereby ensuring application portability. Furthermore,
c-Eclipse enables Cloud users to specify elasticity policies that describe how the
deployed virtualized resources must be elastically adapted at runtime to match
the needs of a dynamic application-workload. In this paper, we introduce the ar-
chitecture and implementation of c-Eclipse, and describe its key characteristics
via a use-case scenario that involves a user creating a description of a 3-tier Cloud
application, enriching it with appropriate elasticity policies, submitting it for de-
ployment to two different Cloud providers and, finally, monitoring its execution.

1 Introduction

Application deployment and management in Infrastructure as a Service (IaaS) Clouds
can be a complex and time consuming endeavor, typically requiring manual effort on
the users’ behalf and relying on vendor-specific, proprietary tools. Existing IaaS tools
do not provide users with vendor-neutral mechanisms for describing application con-
figuration, deployment, runtime application-scaling preferences, and elasticity policies.
Consequently, the migration of applications between different IaaS providers requires
significant re-configuration and re-deployment effort and time, leading to vendor lock-
in. With the growing number of IaaS-provider service offerings and the increasing
complexity of applications deployed on Clouds, the selection of the most appropri-
ate provider to host an application becomes challenging. While seeking to identify the
deployments that suit best their needs, IaaS clients need to overcome vendor lock-in in
order to test and/or deploy their applications on multiple IaaS providers. Therefore, it
becomes evident that there is a need for application management tools that facilitate
the description of applications in a vendor neutral manner, enabling easy application
deployment, management, and migration across different providers, preventing vendor
lock-in.

This article presents c-Eclipse, a generic Application Management Framework that:



– is open-source and has been implemented on top of the reliable Eclipse platform1;
– offers graphical tools to facilitate the description of an application’s structure and

its lifecycle management operations;
– adopts the TOSCA [1] open specification for blueprinting Cloud applications and

consequently packaging them in portable archives that can be processed by any
compliant IaaS-provider;

– adopts a language that enables the description of elasticity policies for such Cloud
applications;

– provides tools for elasticity policy specification at different levels of an applica-
tion’s structure.

To this end, c-Eclipse can be promoted by Cloud vendors as an enabling tool for
configuring, deploying and managing Cloudified applications on their infrastructure.
This is beneficial both for vendors and users; The former can integrate c-Eclipse to
their Cloud architectures to attract a wider customer base to use their services via its
GUI; the latter are able to describe - the often complex - deployment and management
lifecycle of their applications with minimal effort and in a portable way, thus avoiding
vendor lock-in.

The rest of the paper is structured as follows: Section 2 presents the related work
in Cloud Application Managements platforms. Section 3 gives an overview of the c-
Eclipse framework, its architecture, the application description language used and the
UI. The c-Eclipse approach for describing elasticity policies for applications is dis-
cussed in Section 4. Finally, Section 5 presents a use-case scenario with a 3-tier appli-
cation described via c-Eclipse and deployed on two separate Cloud infrastructures.

2 Related Work

Many application management frameworks have been developed lately to support Cloud
Computing. Some of these frameworks are proprietary, locking their users to specific
providers, while others are generic enough allowing management of applications on
different infrastructures.

Proprietary: Amazon CloudFormation enables the creation and provisioning of
EC2 infrastructure deployments. It uses JSON template files to describe the collec-
tion of EC2 resources that compose a deployment. Furthermore, by leveraging Amazon
Auto Scaling it enables the specification of policies for automatically scaling the num-
ber of EC2 instances in a deployment. Oracle Virtual Assembly Builder (OVAB) [2]
simplifies the provisioning of multi-tier applications by capturing the application com-
ponents into self-contained VM appliances. OVAB can instantiate the appliances on
Oracle’s Exalogic Elastic Cloud Infrastructure and scale the deployed applications hor-
izontally after a scale command is sent via the command line interface. VMware vCloud
Application Director [3] is a provisioning solution that provides the necessary tooling
for simplifying the process of designing, customizing and deploying applications on
any VMware based Cloud infrastructure. From the well established aforementioned

1
https://www.eclipse.org/



tools, only CloudFormation enables the specification of elasticity policies for automatic
scaling, while all of them lock their users to specific IaaS providers.

Generic: Juju [4] is a tool for designing, configuring and deploying applications on
a limited number of Cloud platforms. It makes use of shareable and reusable charms
that encapsulate the configuration, deployment, connectivity and scaling information
for an application. Charms are usually Linux oriented, thus limiting the portability of
Juju applications. Also, Juju does not allow the specification of elasticity policies. The
Agility Platform by ServiceMesh [5] enables the automatic deployment of applications
on any Cloud provider, and the dynamic management of their lifecycle by defining auto-
scaling rules for adding/removing VMs. Although ServiceMesh allows deployment of
applications on different Cloud environments, it comes with a significant financial cost.
Wrangler [6] provides a system for automatic deployment and monitoring of distributed
applications with complex dependencies on different Cloud infrastructures, through a
dedicated XML language. Users can describe a deployment; characteristics of the vir-
tual resources, VM images, authentication credentials; and send it to a coordinating web
service.

None of the aforementioned platforms adopts open Cloud standards for describing
applications. In an effort to promote Cloud application portability, Winery [7] supports
modeling of TOSCA applications via an HTML5-based environment. TOSCA elements
are created via the Web-based GUI, which also allows users with prior knowledge of the
TOSCA standard to define new types for the TOSCA elements, or configure the existing
ones. Furthermore, Winery does not provide a straightforward way of specifying elas-
ticity policies for applications. c-Eclipse on the other hand provides an intuitive GUI
that hides all the complex details of the TOSCA standard, enabling thus users to exploit
the full potential of the tool. In addition, c-Eclipse enriches the TOSCA specification
with Policy Types for elasticity, and allows its users to specify the desired elasticity
policies for their applications. Finally, Winery relies on BPEL to model applications’
management plans, while c-Eclipse makes use of the TOSCA Lifecycle Interface. An-
other platform that uses TOSCA to automate the deployment and scaling of applications
over any Cloud technology, is Cloudify [8]. It supports the creation of TOSCA applica-
tion blueprints via an open-source CLI, however requiring users to master YAML and
Python languages. This procedure gets easier when using the full-featured web inter-
face, available only in a payware edition.

3 c-Eclipse Overview

This section presents the c-Eclipse framework focusing on the features that make it
attractive to Cloud application developers. Furthermore, it provides a brief overview of
the open Cloud application description specification adopted by c-Eclipse. It continues
with the description of its architecture together with the necessary requirements when
it comes to integration with Cloud vendors. Finally, the c-Eclipse UI is introduced.

3.1 c-Eclipse Features

The c-Eclipse Cloud application management framework incorporates the following
characteristics:



– Ease of Use: It provides an intuitive and user-friendly GUI that minimizes any com-
plexity regarding the process of Cloud application management, therefore serving
as a low-entry barrier to Cloud technologies for new end-users. Not neglecting
experienced users, GUI-driven operations can be manually fine-tuned, effectively
allowing full workflow control when needed.

– Elasticity Policies Specification: It enables the specification of applications’ elas-
ticity policies, so that applications can benefit from the dynamic nature of Cloud
environments.

– Monitoring Interface:It provides interfaces for integration with existing monitor-
ing systems, so that its users can monitor the performance of their deployed appli-
cations and their resources thereof.

– Cloud Vendor Neutral: Through the adoption of the TOSCA open specification,
allows its users to describe applications in a very generic way, so that they can be
deployed across different Cloud infrastructures.

– Platform Independence: It runs on any OS supported by Eclipse.

3.2 TOSCA Specification for Cloud Applications

TOSCA provides a language to describe the structure of applications, together with
their management operations. The structure of an application defines the components
an application consists of and the relationships between them. Application components
are described in TOSCA by means of Nodes (i.e. an application component can be a
Tomcat application server in a 3-tier environment). Each Node can have certain seman-
tics that are defined by the properties of the corresponding Node Type. Such semantics
include the Requirements a Node has against its hosting environment, the Capabilities
it offers and the Policies that govern its execution, such as security or elasticity policies.
Similarly, TOSCA Relationships are used to represent the relations in an application’s
structure, and have their own semantics defined by their Relationship Type. The man-
agement aspects of an application are described in TOSCA either by means of lifecycle
operations (via the Lifecycle Interface) or by more complex Management Plans. The
Lifecycle Interface defines five operations (install, configure, start, stop, uninstall) for
describing the management of applications’ lifecycle. On the other hand, there is no
TOSCA specific way to describe Management Plans. Instead, plans can be specified
in any existing process modeling language, such as BPMN, and referenced through
TOSCA. Both Lifecycle Operations and Managements Plans require some content to
be realized, such as virtual machine images, configuration files etc. These contents are
collectively referred to as Artifacts.

TOSCA application descriptions can be processed in an imperative or declarative
manner. In case of imperative processing [9] the management behaviour of the de-
scribed application has to be explicitly defined by the user by means of Management
Plans. In declarative processing, the management behaviour of the application can be
inferred by the semantics of Nodes’ and Relationships’ Types (i.e. operations speci-
fied in the Lifecycle Interface of a Type). The latter imposes extra overhead to TOSCA
type architects who need to precisely define the semantics of each type, and for the im-
plementers of the TOSCA processing environments who must correctly interpreter the



Fig. 1: c-Eclipse Architecture

types’ semantics to infer an application’s management plans. Consequently, declara-
tive processing makes modeling of Cloud applications easier from the user perspective,
since they don’t have the extra overhead of defining Management Plans. For this reason,
c-Eclipse adheres to the declarative processing approach.

3.3 c-Eclipse Framework Architecture

c-Eclipse is built on top of the Eclipse Platform and follows its OSGi plug-in based
software architecture. Its main component is the Application Modeling Tool, which
facilitates the creation of TOSCA application descriptions. The elements specified in
TOSCA and the c-Eclipse specific type definitions for Nodes and Relationships, are
stored in the c-Eclipse file system (TOSCA Elements and Type Definitions), so that
they can be accessed by the Modeling Tool. The Application Modeling Tool associates
the TOSCA elements and the defined Node and Relationship Types with visual elements
that can be used to graphically model an application. The graphical description is trans-
lated on the fly into TOSCA, using the semantics of each element in the description.
In order to provide such functionalities, c-Eclipse utilizes Graphiti2, an Eclipse-based
graphics framework that enables rapid development of state-of-the-art diagram editors
for domain models. Graphiti is based on the Eclipse Modeling Framework (EMF) and
offers graphical representations and editing possibilities for EMF objects. To this ex-
tend, the Application Modeling Tool transforms TOSCA elements into EMF objects
and uses the Graphiti infrastructure to build the graphical editor through which users
can schematically describe their applications The TOSCA description along with any
artifacts for materializing and managing the described application are packaged into a
single archive file (CSAR) by the CSAR Exporter. Fig. 1 depicts the high level archi-
tecture and the major components of c-Eclipse.

The exported CSAR is passed from c-Eclipse to a TOSCA processing environment
operated by a Cloud provider. This environment, referred to as a TOSCA Container,

2
https://www.eclipse.org/graphiti/



must be able to process CSAR files and understand the semantics of the contained ap-
plication description, so that it can deploy and manage the application throughout its
lifecycle. Each application modeling tool can define its own types, for various TOSCA
elements, with different properties and interfaces. Thus, in order for the TOSCA Con-
tainer to process a TOSCA description in a declarative manner, which implies deriving
based on the type definition of each element the order in which the specified manage-
ment operations must be executed, the type definitions utilized in a description must
also be known to the TOSCA Container. Consequently, a CSAR archive file must con-
tain the following so as to be portable and processable by any TOSCA Container: (1)
The XML file specifying the TOSCA-based application description, (2) The definitions
of the Node, Relationship and other elements’ types that are used in the TOSCA de-
scription, and (3) the artifacts that realize an application’s management operations and
that are referenced in the TOSCA description.

A TOSCA Container might include various components that can be used to pro-
cess CSARs. Each vendor can decide what components to support and how to provide
them within his Cloud architecture. A Container that supports declarative processing of
CSARs must implement at least two components: CSAR Processor and Model Inter-
preter (Fig. 1). The CSAR Processor receives the CSAR from the TOSCA Container
and is responsible for the extraction and deployment of the artifacts. Once the artifacts
are ready to be used by the TOSCA Container, the Model Interpreter navigates the
application’s structure and distinguishes the artifacts realizing the management oper-
ations of each Node, such as installing/uninstalling instances. Other components that
can be implemented by the container, are a Definition Manager component in charge
of storing the type definitions and making them available to the Model Interpreter and
an Artifact Manager component for storing the artifacts in appropriate stores.

According to the specification, Cloud providers that wish to become TOSCA-compliant
should provide a Container as part of their Cloud architecture. The Container must
communicate with an IaaS Orchestrator to invoke the necessary IaaS-specific API
calls that satisfy the respective TOSCA description. An alternative way of integrat-
ing TOSCA modeling tools, such as c-Eclipse, with Cloud providers is to implement
a TOSCA Container at the tools’ side, with interfaces to multiple Cloud infrastruc-
tures. To this extend, Cloud providers should offer the required APIs, so that they can
be accessed by the Containers. However, this endeavour entails in-depth knowledge
of several complex APIs (sometimes lacking sufficient documentation) and extensive
development skills to produce a fully working Container at the tools’ side. This was ob-
served and confirmed at first hand, while working towards the evaluation of c-Eclipse
in a real scenario (see Section 5), where we implemented simple yet functional TOSCA
Containers for two Cloud vendors. Among other, developing a TOSCA Container for a
particular IaaS requires to provision for the exchange of authentication tokens, perform
validity checks for CSARs, correct deployment/configuration of virtualized instances
given defined Node Types, as well as, user requirements and constraints.

Finally, c-Eclipse provides the necessary interfaces so as to be integrated with exist-
ing monitoring systems, enabling thus its users to acquire and record the performance
of their deployed applications from a single working environment. Currently, it is fully
integrated with the JCatascopia [10] monitoring system.



Fig. 2: c-Eclipse UI - (Left) Cloud Project View, (Center) Canvas, (Right) Palette, (Be-
low) Authentication View

3.4 c-Eclipse User Interface
Like any other Eclipse project, c-Eclipse organizes all the files related to an application
in a structured hierarchy, as depicted in Fig. 2. A Cloud project, in the Cloud Project
View, acts as a placeholder for a single Cloud application and consists of four folders: (i)
the Application Descriptions folder containing TOSCA descriptions of applications, (ii)
the Application Submissions folder containing details about application deployments
(i.e. Cloud provider, deployment status, total cost etc.), (iii) the Artifacts folder with the
actual files for the artifacts referenced in the application description, and finally (iv) the
Monitoring folder including any monitoring data collected by the integrated monitoring
system during application’s deployments.

Application developers can use the Modeling Tool to describe a Cloud application
graphically. The most important part of the tool is the Palette, which includes most
of the elements required for creating application descriptions. These are the applica-
tion components (one component element in the Palette for each distinct Node Type),
Relationships (one relationship/connection element in the Palette for each distinct Re-
lationship type), artifacts and monitoring metrics. By simply dragging and dropping
pictorial elements from the Palette onto the Canvas of the tool, developers can create a
graphical representation of an application. Throughout the application description pro-
cess, the Modeling tool translates on-the-fly the graphical description into TOSCA and
error-proofs the generated TOSCA to assure adherence to the specification, prompting
warnings if necessary.

Apart from the default semantics that each Palette element has, additional infor-
mation can be provided for each element contained in the description, by using the
Properties View of the tool. For example, the view can be used for uploading custom
images for application components, specifying elasticity policies for the whole appli-
cation and/or for components separately, writing deployment scripts etc. Fig.3 presents
a tab in the properties view for specifying elasticity constraints and strategies for a
specific application component.



Fig. 3: c-Eclipse Properties View (Elasticity constraints and strategies tab).

Users with expertise in writing XML and with deep knowledge of the TOSCA spec-
ification, can manually create or edit an application’s TOSCA XML description. Any
changes in the XML will be automatically reflected to the corresponding graphical de-
scription. This way c-Eclipse attracts broader audience, from entry level to more ad-
vanced users.

4 Elasticity Specification in c-Eclipse

Apart from enabling portable automated application deployment and management, c-
Eclipse facilitates the specification of applications’ elasticity policies so that they can
scale at runtime based on user defined policies. Since the TOSCA language does not
directly specify how to define elasticity policies for Cloud applications, c-Eclipse ex-
ploits the TOSCA Policy element to achieve elasticity specification without interfering
with applications’ portability. TOSCA defines policies as the means by which we can
express non-functional behaviour or quality-of-services for an application.

We use two types of elasticity-oriented TOSCA policies in accordance with the
SYBL [11] language for elasticity requirements specification: Elasticity Constraint and
Elasticity Strategy. The Elasticity Constraint type is used to express the constraints
of an application, related to cost, performance and other application-quality metrics.
Here the application user does not specify the exact actions to be enforced when a
constraint is violated. Instead, the appropriate actions are determined by the underlying
intelligent elastic Resource Provisioning System [12]. The Elasticity Strategy type, is
used to express specific strategies that should be enforced by the execution environment
when specific constraints are violated.

The purpose of defining two distinct TOSCA Policy Types of elasticity is twofold.
Cloud users can:

– Specify elasticity constraints and strategies for their applications at different levels
of detail, based on their expertise.

– Fully exploit the capabilities of the underlying Resource Provisioning System. In
case the underlying system is smart enough to take scaling decisions on its own,
the user specifies only the elasticity constraints and relies on the system to decide
how to fullfil them.



The purpose of specifying elasticity policies in c-Eclipse is to give its users more
control over their deployments. Elasticity policies are translated into SYBL, and in-
jected into the TOSCA description. If the IaaS resource provisioning system supports
dynamic scaling of applications, then the specified elasticity policies are translated, (by
the TOSCA Container) to provider specific elasticity rules. Otherwise, the defined elas-
ticity policies will be ignored.

5 Use-Case

This section aims at demonstrating the portability and elasticity support capabilities of
the c-Eclipse Cloud Application Management Framework. To do so, we present the
description, deployment and management phases of an exemplary Cloud application
on two environments: (i) Amazon’s EC2 infrastructure and (ii) Nephelae3, our own
OpenStack-compliant Cloud research infrastructure.

Before starting the demonstration we needed to implement our TOSCA Contain-
ers, as described in Section 3.3, and deploy them on a single virtual instance both on
Amazon EC2 and Nephelae. Our simple container for AWS is composed by ≈ 450
lines of Code (LOC), implementing 24 needed functions. Similarly, the OpenStack
container needed ≈ 600 LOC and same number of functions. In order to instrument
the application’s deployment we also needed a monitoring system to be deployed on
both infrastructures. In contrast to EC24, Nephelae does not include a native resource
and application monitoring solution. Therefore, we instantiate the JCatascopia system
for providing the monitoring metrics that will be utilized during the specification of
elasticity policies. Finally, we assume each tier instance runs on a Linux-based OS.

Use-Case Scenario: We consider a 3-tier Web application that provides video stream-
ing services to online users. The tiers comprising the application are as follows: (i)
a Load Balancer which serves as an entry point and distributes incoming user requests
across multiple application servers, (ii) the Application Server itself, which is mate-
rialized through an Apache Tomcat server with the necessary video streaming Web
application deployed, and (iii) a Cassandra5 NoSQL distributed data storage back-end
from where the necessary video content is retrieved.

Application Description Phase: In this first step, the application developer initi-
ates the description process by creating a Cloud project, which will be unique for the
above Web application. The necessary folder structure (see Section 3.4) is automati-
cally created, establishing placeholders for individual components required throughout
the application management lifecycle. At the same time, the developer is prompted
to enter service endpoints and authentication credentials6 for one or more candidate
Cloud provider(s), where the application might eventually be submitted for deployment.
The Authentication Token View gives an overview of credential details (Fig. 2).

The next step involves creating the application description itself through a guided
wizard and subsequently invoking the Modeling Tool, where the respective application

3
http://linc.ucy.ac.cy/Nephelae/

4 AWS provide the CloudWatch solution for monitoring applications and Cloud resources.
5
http://cassandra.apache.org/

6 Credentials are managed in a secure manner using the native Eclipse password manager



structure will be defined. During this phase, the user designs a coarse-grained blueprint
of the application structure, avoiding reference to vendor-specific details. This way, the
description is portable across different providers. Consequently, at this stage the Palette
contains only those generic components that will later-on act as containers for vendor-
specific information. Such structural parts include: the application components and the
relationships.

For the use-case scenario at hand, the coarse-grained application blueprint is com-
prised of 3 different application components (Fig. 4). The Load Balancer component is
populated with an HA Proxy7 tarball (orange color box) and a Bash script (white color
box) for the respective configuration. Similarly, the Application Server component is
populated with the Web application ARchive (WAR) that provides the video stream-
ing functionality and a Bash script for minimal Tomcat configurations. The NoSQL
database component is populated with a Bash script for contextualization purposes,
such as seed node IP address, listening ports, etc. Additionally, each Component is
enriched with a common RSA keypair8 for shell-access purposes (yellow color box).
Finally, the necessary inter-dependencies in the application’s structure are specified via
the two Relationships shown in Fig. 4. Generic application descriptions are stored in the
Application Descriptions folder, and can be used later as customizable templates which
can be enriched with vendor-specific information at the deployment phase.

Application Deployment Phase: Once the application developer completes the
generic design, it is time to engage in a more fine-grained topology description by
providing vendor-specific information. To do so, the user has to invoke the application
deployment phase through a context menu action on the description file. This phase
is again a wizard driven process requiring the user to select the target Cloud provider
where the application deployment will eventually take place. The Palette and Properties
Views are now populated with vendor-specific information retrieved by interrogating
the IaaS API. In addition to the standard information advertised by the provider such
as compute resources availability, volumes and networking configurations, the Palette
provides monitoring metrics available by the monitoring systems on EC2 and Nephelae.

To minimize the information displayed and swiftly identify any required compo-
nent, the Palette includes standard searching and filtering mechanisms. Given that each
tier instance of the video streaming service will run on a Linux-based OS, the developer
sets the necessary filters to expose available base images that include a 64-bit Ubuntu
12.04 server. For the Application and Database components, the filters are adjusted to
search for available Ubuntu-based images that include Apache Tomcat and Cassandra
NoSQL, respectively. When suitable images are returned, a simple drag-n-drop oper-
ation of their pictorial representations from the Palette to the respective application
components (green color box), results to their inclusion within the generated TOSCA
description. In the case that matching images are not retrieved, c-Eclipse provides the
necessary fields through which the developer can pass specific scripts (or artifact file-
names) that will be executed upon contextualization.

What remains to do before inhibiting the actual application deployment process,
is for the developer to specify the elasticity-oriented policies. This includes selecting

7
http://haproxy.1wt.eu/

8 Only the public key material of the RSA keypair is included within the TOSCA description



Fig. 4: Application Deployment on Amazon EC2 and Nephelae

one or more available monitoring metrics from the Palette and assigning them to the
components whose resources need to be elastically adapted on runtime. For the video
service, it was decided to scale-up only the Application and Database components by
adding a new virtualized instance when the CPU utilization threshold exceeded 80%
(see Fig. 3). To achieve this, each component was assigned to a CPU probe that reports
utilization to the underlying IaaS orchestrator in frequent time intervals.

The customized description, is stored under the Application Submissions folder at-
tributed with the name of the Cloud provider. Upon the completion of the fine-grained
description, the application can be submitted to the target Cloud infrastructure for de-
ployment. With a context-menu action, the CSAR Exporter creates the CSAR con-
taining the description with the artifacts, and hands it to the TOSCA Container at the
selected IaaS provider.

Application Management Phase: Finally, through, the c-Eclipse Deployment View,
the application developer can instantly obtain the deployment status without leaving the
Eclipse environment. As depicted in the lower part of Fig. 4, a snapshot of the deploy-
ments on EC2 and Nephelae is provided, along with provider-specific properties such as
component IP addresses, instance IDs, running times etc. A background polling mech-
anisms refreshes the view and provides the latest information from each IaaS.

6 Conclusion and Future Work

In this paper we present c-Eclipse; an open-source, vendor neutral, Cloud Applica-
tion Management Framework built on top of Eclipse. c-Eclipse aims at facilitating the



deployment and management of Cloud applications, promoting portability of appli-
cations across infrastructures, and supporting application elasticity. It adopts an open
Cloud standard, and provides a unified environment for describing the structure, de-
ployment and management operations of applications. It then exports the applications’
descriptions into portable archives that can be processed by different providers. The
functionality of c-Eclipse is presented via a use-case scenario with a 3-tier applica-
tion being described and deployed on private and public Cloud infrastructures. Though
still a prototype, c-Eclipse is currently used in the CELAR Project to deploy elastic
Cloud applications. As future work, we will extend c-Eclipse to support existing ap-
plication configuration management tools, such as Chef (http://getchef.com),
to automatically provision and configure applications on new node instances, without
requiring the user to write custom deployment scripts. c-Eclipse is available on GitHub
at http://github.com/CELAR.

7 Acknowledgments

This work was partially supported by the European Commission in terms of the CELAR
317790 FP7 project (FP7-ICT-2011-8) and by the European Regional Development
Fund and the Republic of Cyprus through the Research Promotion Foundation (“Infras-
tructure Upgrade /0609/09” project). The authors thank Andreas Papadopoulos, Geor-
giana Copil and Demetris Antoniades for their fruitful insights.

References

1. OASIS: TOSCA Version 1.0. http://goo.gl/ApNP3C
2. Oracle Virtual Assebly Builder. http://goo.gl/Eetq0V
3. VMware vCloud Application Director. http://goo.gl/j7LyU7
4. Ubuntu Juju. https://juju.ubuntu.com/
5. ServiceMesh Agility Platform. http://www.servicemesh.com
6. Juve, G., Deelman, E.: Automating Application Deployment in Infrastructure Clouds. In:

Proceedings of the 2011 IEEE 3rd International Conference on Cloud Computing Technol-
ogy and Science, IEEE Computer Society (2011) 658–665

7. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery: A Modeling Tool for TOSCA-
Based Cloud Applications. In: Service-Oriented Computing. Volume 8274 of Lecture Notes
in Computer Science. Springer (2013) 700–704

8. GigaSpaces Cloudify. http://goo.gl/rYGceK
9. Binz, T., Breitenbücher, U., Haupt, F., Kopp, O., Leymann, F., Nowak, A., Wagner, S.: Open-

TOSCA - A Runtime for TOSCA-Based Cloud Applications. In: ICSOC. Volume 8274 of
Lecture Notes in Computer Science., Springer (2013) 692–695

10. Trihinas, D., Pallis, G., Dikaiakos, M.D.: JCatascopia: Monitoring Elastically Adaptive Ap-
plications in the Cloud. In: 14th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing. (2014)

11. Copil, G., Moldovan, D., Truong, H.L., Dustdar, S.: SYBL: An Extensible Language for
Controlling Elasticity in Cloud Applications. In: 13th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing. (2013) 112–119

12. CELAR EU FP7 Project. http://celarcloud.eu/


