
High-Performane Crawling and Filtering in JavaDemetris Zeinalipour-Yazti Marios DikaiakosWinMob Tehnologies Ltd. Dept. of Computer SieneP.O. Box 20922 University of CyprusNiosia, Cyprus PO Box 20537, Niosia, Cyprussyiazti�uy.a.y mdd�uy.a.yAbstratWeb rawlers are the key omponent of servies running on Internet and providing searhingand indexing support for the entire Web, for orporate Intranets and large portal sites. Morereently, rawlers have also been used as tools to ondut foused Web searhes and to gatherdata about the harateristis of the WWW. In paper, we study the employment of rawlersas a programmable, salable, and distributed omponent in future Internet middleware infras-trutures and proxy servies. In partiular, we present the arhiteture and implementation of,and experimentation with WebRACE, a high-performane, distributed Web rawler, �lteringserver and objet ahe. We address the hallenge of designing and implementing modular,open, distributed, and salable rawlers, using Java. We desribe our design and implemen-tation deisions, and various optimizations. We disuss the advantages and disadvantages ofusing Java to implement the WebRACE-rawler, and present an evaluation of its performane.WebRACE is designed in the ontext of eRACE, an extensible Retrieval Annotation CahingEngine, whih ollets, annotates and disseminates information from heterogeneous Internetsoures and protools, aording to XML-enoded user pro�les that determine the urgeny andrelevane of olleted information.1 IntrodutionIn this paper we present the arhiteture and implementation of, and early experimentation withWebRACE, a prototype HTTP Retrieval, Annotation and Cahing Engine. WebRACE is part of amore generi system, alled eRACE (extensible Retrieval, Annotation and Cahing Engine), whih isa distributed middleware infrastruture that enables the development and deployment of informationdissemination servies on Internet. eRACE servies ollet information from heterogeneous Internetsoures aording to pre-registered, XML-enoded user pro�les. These pro�les drive the olletion

of information and determine the relevane and the urgeny of olleted information. eRACE o�ersa funtionality that goes beyond the apabilities of traditional Web servers and proxies, providingsupport for intelligent personalization, ustomization and transoding of ontent, to math theinterests and priorities of individual end-users through �xed and mobile terminals. It enables thedevelopment of new servies and the easy re-targetting of existing servies to new terminal devies.WebRACE is the Web-spei� proxy of eRACE. It rawls the Web to retrieve douments aord-ing to user pro�les. The system subsequently ahes and proesses retrieved douments. Proessingis guided by pre-de�ned user queries and onsists of keywords-searhes, title-extration, summariz-ing, lassi�ation based on relevane with respet to user-queries, estimation of priority, urgeny,et. WebRACE proessing results are enoded in a WebRACE-XML grammar and fed into a dis-semination server, whih selets dynamially among a suite of available hoies for informationdissemination, suh as \push" vs. \pull," the formatting and transoding of data (HTML, WML,XML), the onnetion modality (wireless vs. wire-based), the ommuniation protool employed(HTTP, GSM/WAP, SMS), et.In this paper we desribe our implementation experiene with using Java to develop the high-performane Crawler, Annotation Engine and Objet Cahe of WebRACE. We also desribe a num-ber of tehniques employed to ahieve high-performane, suh as distributed design to enable theexeution of rawler modules to di�erent mahines, support for multithreading, ustomized memorymanagement, employment of persistent data strutures with disk-ahing support, optimizations ofthe Java ore libraries for TCP/IP and HTTP ommuniation, et.The remaining of the paper is organized as follows: Setion 2 presents and overview of the We-bRACE system arhiteture and the hallenges addressed in our work. Setion 3 desribes the Javaimplementation of a high-performane persistent queue used in a number of WebRACE omponents.Setions 4 and 5 desribe the design and implementation of a Crawler and Objet Cahe, used toretrieve and store ontent from the Web. Setion 6 presents the Filtering Proessor that analyzes theolleted information, aording to user-pro�les. Finally, we onlude in Setion 7 with onlusionsand future work.2 WebRACE Design and Implementation ChallengesThe eRACE infrastruture onsists of protool-spei� Agent-Proxies, like mailRACE, newsRACEand dbRACE, that gather information from POP3 email-aounts, USENET NNTP-news, and Web-database queries, respetively. WebRACE is the Agent-Proxy of eRACE that ollets, proessesand ahes ontent from information soures on the WWW, aessible through the HTTP protools(HTTP/1.0, HTTP/1.1), aording to eRACE user-pro�les. Other eRACE proxies have the samegeneral arhiteture with WebRACE, di�ering only in the implementation of their protool-spei�

Figure 1: WebRACE System Arhiteture.proxy engines.WebRACE is omprised of two basi omponents, the Mini-rawler and the Annotation Engine,whih operate independently and asynhronously (see Figure 1). Both omponents an be distributedto di�erent omputing nodes, exeute in di�erent Java heap spaes, and ommuniate through apermanent soket link; through this soket, the Mini-rawler noti�es the Annotation Engine everytime it fethes and ahes a new page in the Objet Cahe. The Annotation Engine an then proessthe fethed page asynhronously, aording to pre-registered user pro�les or other riteria.In the development of WebRACE we address a number of hallenges. First is the design andimplementation of a user-driven rawler. Typial rawlers employed by major searh engines suhas Google [5℄, start their rawls from a arefully hosen �xed set of \seed" URL's. In ontrast, theMini-rawler of WebRACE reeives ontinuously rawling diretives whih emanate from a queue ofstanding eRACE requests (see Figure 1). These requests hange dynamially with shifting eRACE-user interests, updates in the base of registered users, hanges in the set of monitored resoures, et.Seond, is the design of a rawler that monitors Web-sites exhibiting frequent updates of theirontent. WebRACE should follow and apture these updates so that interested users are noti�edby eRACE aordingly. Consequently, WebRACE is expeted to rawl and index parts of the Webunder short-term time onstraints and keep multiple versions of the same Web-page in its store,until all interested users reeive the orresponding alerts.Similarly to personal and site-spei� rawlers like SPHINX [20℄ and NetAttahe Pro [16℄, We-bRACE is ustomized and targets spei� Web-sites. These features, however, must be sustainedin the presene of a large and inreasing user base, with varying interests and di�erent servie-level

requirements. In this ontext, WebRACE must be salable, sustaining high-performane and shortturn-around times when serving many users and rawling a large portion of the Web. To this end,it should avoid dupliation of e�ort and ombine similar requests when serving similar user pro�les.Furthermore, it should provide built-in support for QoS poliies involving multiple servie-levels andservie-level guarantees. Consequently, the sheduling and performane requirements of WebRACErawling and �ltering fae very di�erent onstraints than systems like Google [5℄, Merator [14℄,SPHINX [20℄ or NetAttahe Pro [16℄.Finally, WebRACE is implemented entirely in Java [11℄. Its implementation onsists of approx-imately 5500 lines of ode, 2649 of whih orrespond to the Mini-rawler implementation, 1184 tothe Annotation Engine, 367 to the SafeQueue data struture, and 1300 to ommon I/O libraries.Java was hosen for a variety of reasons. Its objet-oriented design enhanes the software develop-ment proess, supports rapid prototyping and enables the re-use and easy integration of existingomponents. Java lass libraries provide support for key features of WebRACE: platform indepen-dene, multithreading, network programming, high-level programming of distributed appliations,string proessing, ode mobility, ompression, et. Other Java features, suh as automati garbageolletion, persistene and exeption handling, are ruial in making our system more tolerant torun-time faults.The hoie of Java, however, omes with a ertain risk-fator that arises from known performaneproblems of this programming language and its run-time environment. Notably, performane androbustness are issues of ritial importane for a system like WebRACE, whih is expeted to funtionas a server, to run ontinuously and to sustain high-loads at short periods of time. In our experiments,we found the performane of Java SDK 1.3 satisfatory when used in ombination with the JavaHotSpot Server VM [19, 18℄. Furthermore, the Garbage Colletor, whih seemed to be a problem withearlier Java versions, has a substantially improved performane and e�etiveness under Java v.1.3.Numerous experiments with earlier versions of WebRACE, however, showed that memory man-agement annot rely entirely on Java's garbage olletion. During long rawls, memory alloationinreased with rawl size and duration, leading to over-alloation of heap spae, heap-spae overowexeptions, and system rashes. Extensive performane and memory debugging with the OptimizeItpro�ler [25℄ identi�ed a number of Java ore lasses that alloated new objets exessively andaused heap-spae overows and performane degradation. Consequently, we had to develop ourown data-strutures that use a bounded amount of heap-spae regardless of the rawl size, andmaintain part of their data on disk. Furthermore, we re-wrote some of the mission-ritial Javalasses, streamlining very frequent operations. More details are given in the setions that follow.

Figure 2: SafeQueue Arhiteture.3 SafeQueue: A High-performane QueueAt the ore of WebRACE lies SafeQueue, a data-struture that we designed and implemented inJava to guarantee the eÆient and robust operation of our agent-proxy. Queues are used in systemswhere the rate of inoming requests is larger than the rate of servied requests, or where this relationis unknown in advane. Usually, Internet systems inorporate queues at the Appliation Layer toensure that inoming requests will not be \lost" during periods of bursty load, system rashes, et.SafeQueue (SQ) is a typial FIFO queue used in a number of ritial omponents of WebRACE;for example, WebRACE maintains its pending URL requests while rawling the Web and proessingdownloaded Web pages as Java objets in a SQ data struture. During a long rawl, millions of URLobjets would have to be inserted and deleted from the queue. Consequently, an implementation ofSafeQueue as a java.util.LinkList omponent of Java [11℄ would result to an exessive numberof expensive alls to objet onstrutors, the ontinuous alloation and de-alloation of objets andan inreased ativity of the Garbage Colletor, leading to performane degradation and frequentrashes due to heap-memory overows.To overome these problems, we implemented SafeQueue as a irular array of QueueNode objetswith its own memory-management mehanism, whih enables the re-use of objets and minimizes thegarbage-olletion overhead. Moreover, we inorporated support for persistene, overow ontrol,disk ahing, multi-threaded aess, and fast indexing to avoid the insertion of dupliate QueueNodeentries (see Figure 2).All memory required for the SafeQueue struture is bounded and pre-alloated during initializa-tion; no new QueueNode objets are alloated or disarded during the exeution of WebRACE. This

is ahieved with the implementation of a reset() method in the QueueNode lass, whih leansthe various objets ontained in a QueueNode objet, without de-alloating the objet itself fromthe heap. SafeQueue implements a variety of bloking (get(), add()) and non-bloking methods(isFull(), isEmpty(), nodesServed()), whih provide a programmer with transparent aess todata loated in the queue. The add() method makes sure that the queue is not full and assigns datato the �rst available QueueNode. The get() method returns the ontents of SafeQueue's head andreleases the orresponding objet.SafeQueue implements an overow-management mehanism as follows: if the queue is full whenan add() request is issued, SafeQueue withholds and returns the �rst available QueueNode of theOverowBu�er (see Figure 2, point 3). As soon as this bu�er is �lled, its ontents are ompressed,serialized and ushed to seondary storage by the OverowThread. This thread maintains a ounterthat is inremented every time a bu�er is ushed to disk to provide unique names to stored bu�ers.Whenever QueueNodes are relinquished, the ReloaderThread is invoked and fethes QueueNodeobjets stored in overow bu�ers and seondary storage (see Figure 2, point 7).Many dupliate requests are generated during rawling beause di�erent Web pages often on-tain links to the same resoure. SafeQueue's Index addresses this problem by ensuring that notwo idential QueueNodes will be plaed in SafeQueue. This mehanism is implemented with ajava.util.HashTable, whih indexes queued QueueNode's. Eah time the add() method is alled,the key of the respetive QueueNode objet is added to the SafeQueue Index. If the QueueNodekey is already in the HashTable, the objet is dropped. On the other hand, eah time we invoke theget() method to remove an objet from the queue, its key is also removed from the index.Java-based systems running for long periods of times are exposed to system failures, Java VirtualMahine rashes, memory overow exeptions, et. Fault-tolerane in suh systems is very importantbeause a rawling proess might require many days. SafeQueue provides persistene with thedeployment of a PersistenyThread, whih saves SafeQueue on seondary storage periodially andasynhronously, without bloking the operation of the Queue. In ase of WebRACE failure, whenthe server restarts, it restores SafeQueue to its last saved state. This proedure is expensive beausethe PersistenyThread has to deompress and de-serialize the queue. The time required is alwaysless than 1 minute for a Queue with 106 nodes. The interval of SafeQueue's storage is on�gurablethrough the server's settings.4 The Mini-rawler of WebRACEA rawler is a program that traverses the hypertext struture of the Web automatially, starting froman initial hyper-doument and reursively retrieving all douments aessible from that doument.Web rawlers are also referred to as robots, wanderers, or spiders. Typially, a rawler exeutes a

basi algorithm that takes a list of \seed" URL's as its input, and repeatedly exeutes the followingsteps [14℄: It initializes the rawling engine with the list of seed URL's and pops a URL out ofthe URL list. Then, it determines the IP address of the hosen URL's host name, opens a soketonnetion to the orresponding server, asks for the partiular doument, parses the HTTP responseheader and deides if this partiular doument should be downloaded. If this is so, the rawlerdownloads the orresponding doument and extrats the links ontained in it; otherwise, it proeedsto the next URL. The rawler ensures that eah extrated link orresponds to a valid and absoluteURL, invoking a URL-normalizer to \de-relativize" it, if neessary. Then, the normalized URL isappended to the list of URL's sheduled for download, provided this URL has not been fethedearlier.In ontrast to typial rawlers [20, 14℄, WebRACE refreshes ontinuously its URL-seed list fromrequests posted by the eRACE Request Sheduler. These requests have the following format:[Link, ParentLink, Depth, fownersg℄Link is the URL address of the Web resoure sought, ParentLink is the URL of the page thatontained Link, Depth de�nes how deep the rawler should \dig" starting from the page de�ned byLink, and fownersg ontains the list of eRACE users potentially interested in the page that will bedownloaded.The Mini-rawler is on�gurable through three �les: a) /onf/webrae.onf, whih ontainsgeneral settings of the engine, suh as the rawling start page, the depth of rawling, intervals betweensystem-state save, the size of key data-strutures maintained in main memory, et.; b) /onf/mime.types,whih ontrols what Internet media types should be gathered by the rawler;) /onf/ignore.types,whih ontrols what �le extensions should be bloked by the engine; URL resoures with a suÆxlisted in ignore.types will not be downloaded regardless of the atual mime-type of that �le'sontent. Making the Mini-rawler on�gurable through these on�guration �les renders it adaptableto spei� rawl tasks and benhmarks. The rawling algorithm desribed in the previous setionrequires a number of omponents, whih are listed and desribed in detail below:� The URLQueue for storing links that remain to be downloaded.� The URLFether, whih downloads douments using the HTTP protool. The URLFetherontains also a URL extrator and normalizer, whih extrats links from a doument andensures that the extrated links are valid and absolute URL's.� The Objet Cahe, whih stores and indexes downloaded douments, and ensures that nodupliate douments are maintained in ahe. The Objet Cahe, however, an maintainmultiple versions of the same URL, if its ontents have hanged with time.

Figure 3: URL Fethers.4.1 The URLQueueThe URLQueue is an implementation of the SafeQueue data struture, omprised of URLQueueN-ode's. URLQueueNode's are Java objets that apture requests oming from the Request Shedulerof eRACE. During the server's initialization, WebRACE alloates the full size of the URLQueue onthe heap. The length of the URLQueue is determined during the server's initialization from We-bRACE on�guration �les. At that time, our program alloates the heap-spae required to storeall the nodes of the queue. We hose this approah instead of alloating Queue Nodes on demandfor memory eÆieny and performane. In our experiments, we have on�gured the URLQueue sizeto two million nodes, i.e., two million URL's. This number orresponds to approximately 27MB ofheap spae. A larger URLQueue an be employed, however, at the expense of heap size available forother omponents of WebRACE. We are urrently investigating ways to handle larger URLQueuesizes by making SafeQueue distributed [12℄.4.2 The URLFetherThe URLFether is a WebRACE module that fethes a doument from the Web when provided witha orresponding URL. The URLFether is implemented as a simple Java-thread, whih supportsboth HTTP/1.0 [3℄ and HTTP/1.1 [10℄. Similarly to rawlers like Merator [14℄, WebRACE supportsmultiple URLFether threads running onurrently, grabbing pending requests from the URLQueue,onduting synhronous I/O to download WWW ontent, and overlapping I/O with omputation.In the urrent version of WebRACE, resoure management and thread sheduling is left to Java'sruntime system and the underlying operating system. The number of available URLFether threads,however, an be on�gured during the initialization of the WebRACE-server. It should be notedthat a very large number of URLFether threads an lead to serious performane degradation of oursystem, due to exessive synhronization and ontext-swithing overhead. In future work we plan toinvestigate shemes involving Java mobile agents to implement agile and self-adaptable fethers [8℄.The URLFether supports the Robots Exlusion Protool (REP), whih allows Web masters todelare parts of their sites o�-limits to rawlers. The REP is driven by a text doument loated

robots.txt for http://www.w3.org/User-agent: *Disallow: /TeamDisallow: /ProjetDisallow: /SystemsDisallow: /WebDisallow: /HistoryDisallow: /Out-Of-DateTable 1: Robot.txt �le.in the root of a Web Server, speifying whih resoures should not been aessed by rawlers. Atypial Robot.txt �le is shown in Table 1. In addition to supporting the standard Robots ExlusionProtool, WebRACE supports the exlusion of partiular domains and URL's. To implement theexlusion protool, WebRACE provides a BlokDomain hash table, whih ontains all domains andURL's that should be bloked.The URLFether uses the HTTP support provided by the JDK 1.2 Java lass libraries, whihenables the rawler to speify how long a soket an remain open \waiting" for the Web server to re-spond, through its Soket.setSoTimeout()method. In the urrent java.net.Soket-lass imple-mentation, however, soket objets are not reusable. Therefore, we had to modify the java.net.Soketimplementation, adding an extra \reset(String host, int port)" method that enables the reuseof a soket objet for a di�erent host. Thus, we managed to redue signi�antly the overhead ofontinuously onstruting and destruting soket objets.In addition to handling HTTP onnetions, the URLFether proesses the douments it down-loads from the Web. To this end, it invokes methods of its URLExtrator and normalizer sub-omponent. The URLExtrator extrats links (URL's) out of a page, disregards URL's pointing touninteresting resoures, normalizes the URL's so that they are valid and absolute and, �nally, addsthese links to the URLQueue. The URL-extrator is exposed to all kinds of URL links that pointto media types whih may not be interesting for a partiular, speialized rawl.As shown in Figure 4, the URLExtrator and normalizer works as a 6-step pipe within theURLFether. Extration and normalization of URL's works as follows: in step 1, a fastfind()method identi�es andidate URL's in the web-page at hand, removes internal links (starting from\#"), mailto links (\mailto:"), et, and extrats the �rst URL that is andidate for proessing.The eÆient implementation of fast�nd is hallenging due to the abundane of badly formed HTMLode on the Web. As an alternative solution we ould reuse omponents suh as Tidy [23℄ or itsJava port, JTidy [17℄, to transform the downloaded Web page into well-formed HTML, and thenextrat all links using a generi XML parser. This solution proved to be too slow, in ontrast to our

Figure 4: URL Extrator Arhiteturehttp URL = ``http:'' ``=='' host [``:'' port ℄ [abs path℄host = < A legal Internet host domain name or IP address(in dotted-deimal form), as defined by Setion 2.1 of RFC 1123 >port = *DIGITabs path = Absolute path of the resoure starting from ``/''Table 2: Valid URL Syntax.fastfind() method whih extrats links from a 70KB web page in approximately 80ms.In step 2, a Proative Link Filtering (PLF) method is invoked to disregard links to resoures thatare of no interest to the partiular rawl. PLF uses the /onf/ignore.types on�guration �le ofWebRACE to determine the �le extensions that should be bloked during the URL extration phase.Deiding if a link should be dropped takes less than 1ms and saves WebRACE of the unneessarye�ort to normalize a URL, add it to the URLQueue, and open an HTTP onnetion, just to seethat this doument has a media type that is not olleted by the rawler.Step 3 deals with the normalization of the URL at hand. To this end, we use our URL-normalizermethod, whih alters links that do not omply to the sheme-spei� syntax of HTTP URL's, asde�ned in the HTTP RFCs (see Table 2) [3, 10℄. The URL-normalizer applies a set of heuristi orre-tions, whih give on the average a 95% of valid and normalized URL's. For eah Web page proessed,the URL-normalizer made extensive use of the java.net.URL library while heking the syntativalidity of the normalized URL. Nevertheless, this library reates numerous objets that annot bereused, resulting to exessive heap-memory onsumption, an inreased ativity of the garbage olle-tor, and signi�ant performane degradation. Therefore, we implemented webrae.net.fastURL,a streamlined URL lass that enables the reuse of URL objets via its reparse() method. Thisoptimization ahieves twofold and threefold improvements of the normalization performane underSolaris and Windows NT respetively. This an be seen from Figure 5, where we present the resultsof a java.net.URL vs. webrae.net.fastURL performane benhmark. In this benhmark, weevaluated webrae.net.URL by instantiating up to 108 new URL objets. The benhmark ran on a

1 10 20 30 40 50 60 70 80 90 100 110

Loop Size x 10^6 nodes.

0

50

100

150

200

T
im

e(
se

cs
)

Total Times:[java.net.URL .vs webrace.net.fastURL] Benchmark

java.net.URL
webrace.net.fastURL

Figure 5: webrae.net.URL Performane.Sun Enterprise E250 Server with 2 UltraSPARC-II proessors at 400MHz, with 512MB memory,running the Solaris 5.7 operating system. The URL-normalizer took on the average 200ms for 100URL's.Step 4 �lters out links that belong to domains that are bloked or exluded by the RobotExlusion Protools. Steps 1 through 4 are exeuted repeatedly until all links of the doumentat hand have been proessed. Step 5 logs the URL's that failed the normalization proess fordebugging purposes. Finally, at step 6, all extrated and normalized URL's are olletively addedto the URL-Queue and stored to the Meta-Info Store. Caution is taken to drop dupliate URL's.The URL extration and normalization pipe requires an average of 300ms to extrat the linksfrom a 70KB HTML page and to normalize them appropriately, when exeuted on our Sun En-terprise E250 Server. To evaluate the overall performane of the URLFether, we ran a number ofexperiments, launhing many onurrent fethers that try to establish TCP onnetions and fethdouments from Web servers loated on our 10/100Mbits LAN. Eah URLFether pre-alloatesall of its required resoures before the benhmark start-up. The benhmarks ran on a 360MHzUltraSPARC-IIi, with 128MB RAM and Solaris 5.7. As we an see from Figure 6, the throughputinreases with the number of onurrent URLFethers, until a peak P is reahed. After that point,throughput drops substantially. This rawling proess took a very short time (3 minutes with onlyone thread), whih is atually the reason why the peak value P is 40. In this ase, URLQueueempties very fast, limiting the utilization of URLFether's near the benhmark's end. Running thesame benhmark for a lengthy rawl we observed that 100 onurrent URLFether's ahieve optimalrawling throughput.

1 2 5 10 20 4050 100 300 500700

Number of concurrent URL-fetchers

2

4

6

8

10

12

M
ax

 T
hr

ou
gh

pu
t

(N
 P

ag
es

/s
ec

)
Number of Concurrent URL-fetchers executing in WebRACE (normal-log scale)

P

Figure 6: URL-fether throughput degradation.5 The Objet CaheTheObjet Cahe is the omponent responsible for managing douments ahed in seondary storage.It is used for storing downloaded douments that will be retrieved later for proessing, annotationand subsequent dissemination to eRACE users. The Objet Cahe, moreover, ahes the rawlingstate in order to oallese similar rawling requests and to aelerate the re-rawling of WWWresoures that have not hanged sine their last rawl.The Objet Cahe is omprised of an Index, aMeta-Info Store and an Objet Store (see Figure 1).The Index resides in main memory and indexes douments stored on disk; it is implemented as ajava.util.HashTable, whih ontains URL's that have been fethed and stored in WebRACE. Thatway, URLFether's an hek if a page has been re-fethed, before deiding whether to download itsontents from the Web. The Meta-Info Store ollets and maintains meta-information for aheddouments. Finally, the Objet Store is a diretory in seondary storage that ontains a ompressedversion of downloaded resoures.5.1 Meta-Info StoreThe Meta-Info Store maintains a meta-information �le for eah Web doument stored in the ObjetCahe. Furthermore, a key for eah meta-info �le is kept with the Index of the Objet Cahe toallow for fast look-ups. The ontents of a meta-info �le are enoded in XML and inlude:� The URL address of the orresponding doument;� The IP address of its origin Web server;

< webrae:url>http:==www.s.uy.a.y=~epl121=< =webrae:url>< webrae:ip>194.42.7.2< =webrae:ip>< webrae:kbytes>1< =webrae:kbytes>< webrae:ifmodi�edsine>989814504121< =webrae:ifmodi�edsine><webrae:header>HTTP=1.0 200 OKServer: Netsape-FastTrak=2.01Date: Fri, 11 May 2001 13:50:10 GMTAept-ranges: bytesLast-modified: Fri, 26 Jan 2001 21:46:08 GMTContent-length: 1800Content-type: text=html< =webrae:header><webrae:links>http:==www.s.uy.a.y=Computing=labs.htmlhttp:==www.s.uy.a.y=http:==www.s.uy.a.y=helpdesk< =webrae:links>Table 3: Example of meta-information �le.� The doument size in KiloBytes;� The Last-Modi�ed �eld returned by the HTTP protool during download;� The HTTP response header, and all extrated and normalized links ontained in this doument.An example of a meta-info �le is given in Table 3. Meta-information is used to aelerate the re-rawling of visited Web sites as follows: Normally, a URLFether exeutes the following algorithmto download a Web page:1. Retrieve a QueueNode from the URLQueue and extrat its URL.2. Retrieve the URL and analyze the HTTP-header of the response message. If the host serverontains the message \200 Ok," proeed to the next step. Otherwise, ontinue with the nextQueueNode.3. Download the body of the doument and store it in main memory.4. Extrat and normalize all links ontained in the downloaded doument.5. Compress and save the doument in the Objet Cahe.

6. Save a generated meta-info �le in the Meta-Info Store.7. Add the key (hashCode) of the fethed URL to the Index of the Objet Cahe.8. Notify the Annotation Engine that a new doument has been fethed and stored in the ObjetCahe.9. Add all extrated URL's to the URLQueue.To avoid the overhead of the repeated downloading and analysis of douments that have nothanged, we alter the above algorithm and use the Meta-Info Store to deide whether to downloada doument that is already ahed in WebRACE. More spei�ally, we hange the seond and thirdsteps of the above rawling algorithm as follows:2. Aess the Index of the Objet Cahe and hek if the URL retrieved from the URLQueueorresponds to a doument fethed earlier and ahed in WebRACE.3. If the doument is not in the Cahe, download it and proeed to step 4. Otherwise:� Load its meta-info �le and extrat the HTTP Last-Modified time-stamp assigned by theorigin server. Open a soket onnetion to the origin server and request the doumentusing a onditional HTTP GET ommand (if-modified-then), with the extrated time-stamp as its parameter.� If the origin server returns a \304 (not modified)" response and no message-body,terminate the fething of this partiular resoure, extrat the doument links from itsmeta-info �le, and proeed to step 8.� Otherwise, download the body of the doument, store it in main memory and proeed tostep 4.If a ahed doument has not been hanged during a re-rawl, the URLFether proeeds with rawlingthe doument's outgoing links, whih are stored in the Meta-Info Store, and whih may have hanged.To assess the performane improvement provided by the use of the Meta-Info Store, we ondutedan experiment with rawling two lasses of Web sites. The �rst lass inludes servers that provideontent whih does not hange very frequently (University sites). The seond lass onsists ofpopular news-sites, searh-engine sites and portals (nn.om, yahoo.om, msn.om, et.). For theseexperiments we on�gured WebRACE to use 150 onurrent URLFethers and ran it on our SunEnterprise E250 Server, with the Annotation Proessor running onurrently on a Spar 5.The diagram of Figure 7 (left) presents the progress of the rawl and re-rawl operations for the�rst lass of sites. The time interval between the rawl and the subsequent re-rawl was one hour;within that hour the rawled douments had not hanged at all. The delay observed for the re-rawl

0 5 10 15 20 25 30 35 40 45

Time (seconds).

50

100

150

200

250

300

350

400

450

500

550

600

650

700

764

0

200

400

600

800

N
um

be
r

of
 H

T
T

P
 R

eq
ue

st
s.

[Crawl vs. Re-crawl, 25 US Universities (2 levels)]

Crawling
Re-Crawling after 1 hour with Meta-Info Store

0 50 100 150 200 250 300 350 400 450 500 550 600

Time (milliseconds).

200

400

600

800

1000

1200

1400

1600

1856

N
um

be
r

of
 H

T
T

P
 R

eq
ue

st
s.

[Crawl .vs ReCrawl 10 Frequently Changed Portals (2 levels)]

Crawling 10 Portals (2 levels each).
Re-Crawling after 10 minutes with Meta-Info Store.
Re-Crawling after 1 hour with Meta-Info Store.
Re-Crawling after 1 hour without Meta-Info Store.

Figure 7: Crawling vs. re-rawling in WebRACE.operation is attributed to the HTTP \if-modi�ed-sine" validation messages and the overhead of theObjet Cahe. As we an see from this diagram, the employment of the Meta-Info Store results toan almost three-fold improvement in the rawling performane. Moreover, it redues substantiallythe network traÆ and the Web-servers' load generated beause of the rawl.The diagram of Figure 7 (right) presents our measurements from the rawl and re-rawl opera-tions for the seond lass of sites. Here, almost 10% of the 993 downloaded douments hange be-tween subsequent re-rawls. From this diagram we an easily see the performane advantage gainedby using the Meta-Info Store to ahe rawling meta-information. It should be noted, however, thatwithin the �rst 100mses of all rawl operations, rawling and re-rawling exhibit pratially thesame performane behavior. This is attributed to the fat that most of the rawled portals replyto our HTTP GET requests with \301 (Moved Permanently)'' responses, and re-diret our rawlerto other URL's. In these ases, the rawler terminates the onnetion and shedules immediately anew HTTP GET operation to feth the requested douments from the re-direted address.Finally, in Figure 8, we present measurements from a longer rawl that took 30mins to ompleteand produed 11669 douments. This rawl was onduted on our departmental Web server.6 The Annotation Engine (AE)The Annotation Engine proesses douments that have been downloaded and ahed in the Ob-jet Cahe of WebRACE. Its purpose is to \lassify" olleted ontent aording to user-interestsdesribed in eRACE pro�les. The meta-information produed by the proessing of the AnnotationEngine is stored in WebRACE as annotation linked to the ahed ontent. Pages whih are irrelevant

0 5 10 15 20 25 30

Time (min)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

0

5000

10000

H
T

T
P

 R
eq

ue
st

s.
Crawling www.cs.ucy.ac.cy (10 levels, 45 URLfetchers)

HTTP Requests.
"404 - File Not Found" HTTP Responses.
"text/html, text/plain" documents downloaded and cached.

Figure 8: Performane of a longer rawl.to user-pro�les are dropped from the ahe.Personalized annotation engines are not used in typial Searh Engines [5℄, whih employ general-purpose indies instead. To avoid the overhead of inorporating a generi look-up index in WebRACEthat will be updated dynamially as resoures are downloaded from the Web, we designed the AE sothat it proesses \on the y" downloaded pages. Therefore, eah time the Annotation Engine reeivesa ``proess(file,fusersg)'' request through the established soket onnetion with the Mini-rawler, it inserts the request in the Coordinator, whih is a SafeQueue data struture (see Figure 9).Multiple Filtering Proessors remove requests from the Coordinator and proess them aording tothe Uni�ed Resoure Desriptions (URD's) of eRACE users ontained in the request. Currently, theannotation engine implements a simple pattern-mathing algorithm looking for weighted keywordsthat are inluded in the user-pro�les.6.1 URD's and ACI'sURD is an XML-enoded data struture that enapsulates soure information, proessing diretivesand urgeny information for Web servies monitored by eRACE. A typial URD request is shownin Table 4. The explanation of the URD sheme is beyond the sope of this paper.URD's are stored in a single XML-enoded doument, whih is managed by a persistent DOMdata manager (PDOM) [15℄. The Annotation Engine fethes the neessary URD's from the PDOMdata manager issuing XQL queries (eXtensible Query Language) to a GMD-IPSI XQL engine [15, 21℄.The GMD-IPSI XQL engine is a Java-based storage and query appliation developed by DarmstadtGMD for handling large XML douments. This engine is based on two key mehanisms: a) a

Figure 9: WebRACE Annotation Engine.
<urd><uri timing= \600000" lasthek = \97876750000" port= \80 >"http://www.s.uy.a.y/default.html < =uri><type protool= \http" method= \pull" proesstype= \�lter"= ><keywords><keyword key= \ibm" weight= \1" = ><keyword key= \researh" weight= \3" = ><keyword key= \java" weight= \4" = ><keyword key= \xmlp4j" weight= \5" = >< =keywords><depth level= \4"= ><urgeny urgent= \1"= >< =urd> Table 4: A typial URD.

publi Element get(String id) fString query = 00==urd[�id= � 00 + id + � \℄00;XQLResult r = XQL.exeute(query, do);Element urd = (Element) r.getItem(0);gTable 5: Retrieving a URD-XML node from PDOM.persistent implementation of W3C-DOM Doument objets [1℄; b) a full implementation of the XQLquery language. GMD-IPSI provides an eÆient and reliable way to handle large XML doumentsthrough PDOM, whih is a thread-safe and persistent XML-DOM implementation. PDOM supportsmain-memory ahing of XML nodes, enabling fast searhes in the DOM tree. A PDOM �le isorganized in pages, eah ontaining 128 DOM nodes of variable length. When a PDOM node isaessed by a W3C-DOM method, its page is loaded into a main memory ahe. The default ahesize is 100 pages (12800 DOM nodes). Douments are parsed one and stored in Java serializedbinary form on seondary storage. The generated doument is aessible to DOM operations diretly,without re-parsing. The XQL proessor is used to query PDOM �les. Table 5 illustrates the use ofan XQL ommand to extrat a URD-XML node out of PDOM.The output of a �ltering proess in the Annotation Engine is enoded in XML and alled anACI (Annotated Cahed Information) [28℄; ACI's are stored in an XML-ACI PDOM database. ACIstands for Annotated Cahed Information and is an extensible data struture that enapsulatesinformation about the Web soure that orresponds to the ACI, the potential user-reipient(s) ofthe \alert" that will be generated by eRACE's Content Distribution Agents aording to the ACI,a pointer to the ahed ontent, a desription of the ontent (format, �le size, extension), a lassi-�ation of this ontent aording to its urgeny and/or expiration time, and a lassi�ation of thedoument's relevane with respet to the semanti interests of its potential reipient(s). The XMLdesription of the ACI's is extendible and therefore we an easily inlude additional information init without having to hange the arhiteture of WebRACE. Table 6 gives an example of a typialACI snippet. A more detailed desription of the ACI sheme is beyond the sope of this paper.6.2 Filtering ProessorFiltering Proessor (FP) is the omponent responsible for evaluating if a doument mathes theinterests of a partiular eRACE-user, and for generating an ACI out of a rawled page (see Fig-ure 10). The Filtering Proessor works as a pipe of �lters: At step 1, FP loads and deompressesthe appropriate �le from the Objet Cahe of WebRACE. At step 2, it removes all links ontainedin the doument and proeeds to step 3, where all speial HTML haraters are also removed. At

<ai owner = ``syiazt1'' extension = ``html'' format= ``html''relevane= ``18'' updatetime= ``97876950000 filesize= ``2000''><uri>http://www.s.uy.a.y/default.html< =uri><urgeny urgent= ``1''= ><dobase>969890.gzip< =dobase><expired expir= ``false'' = ><summary>This is a part of the doument with keywords 1)...< =summary>< =ai> Table 6: ACI snippet.

Figure 10: The Filtering Proessor.step 4, any remaining text is added to a Keyword HashTable. Finally, at step 5, a pattern-mathingmehanism loads sequentially all the required URD elements from the URD-PDOM and generatesACI meta-information, whih is stored in the ACI-PDOM (step 6). This pipe requires an averageof 200 mses to alulate the ACI for a 70KB Web page, with 3 potential reipients.In our experiments, we have on�gured the SafeQueue size of the Annotation Engine to 1000nodes, whih is more than enough, sine it is almost every time lear if the AE operates with 10Filtering Proessors and the Mini-rawler with 100 URL-fethers. We have also observed that thenumber of pending requests in the AE SafeQueue has reahed a peak of 55 pending requests at apartiular run of our system.7 Conlusions and Future WorkIn this paper, we presented WebRACE, a World-Wide Web \agent-proxy" that ollets, �lters andahes Web douments. WebRACE is designed in the ontext of eRACE, an extensible RetrievalAnnotation Cahing Engine. eRACE ollets, annotates and disseminates information from hetero-geneous Internet soures and protools (Web, email, newsgroups), aording to XML-enoded user

pro�les that determine the urgeny and relevane of olleted information. The main omponent ofWebRACE is a high-performane, distributed Web rawler and �ltering proessor, written entirelyin Java. Although a number of papers have been published on Web rawlers [20, 14, 7, 6, 24℄,proxy servies [4, 26℄, information dissemination systems [27, 2, 22℄ and Internet middleware [13, 9℄,the issue of inorporating exible, salable and user-driven rawlers in middleware infrastruturesremains open. Furthermore, the adoption of Java as the language of hoie in the design of Inter-net middleware and servers raises many doubts, primarily beause of performane and salabilityquestions. There is no question, however, that Web rawlers written in Java will be an importantomponent of suh systems, along with modules that proess olleted ontent.In our work, we address the hallenge of designing and implementing a modular, user-driven,open, distributed, and salable rawler and �ltering proessor, in the ontext of the eRACE mid-dleware. We desribe our design and implementation deisions, and various optimizations. Further-more, we disuss the advantages and disadvantages of using Java to implement the rawler, andpresent an evaluation of its performane. To assess WebRACE's performane and robustness weran numerous experiments and rawls; several of our rawls lasted for days. Our system workedeÆiently and with no failures when rawling loal Webs in our LAN and University WAN, and theglobal Internet. Our experiments showed that our implementation is robust and reliable. Furtheroptimizations will be inluded in the near future, so as to prevent our rawler from overloading re-mote Web servers with too many onurrent requests. We also plan to investigate alternative queuedesigns and di�erent rawling strategies (breadth-�rst versus depth-�rst) that have been reportedto provide improved rawling eÆieny [7℄. Finally, we plan to investigate the employment of Dis-tributed Data Strutures [12℄ to further improve the salability and performane of mission-ritialomponents of WebRACE.8 AknowledgementsThis work was supported partly by the grant PENEK-No 23/2000 from the Researh PromotionFoundation of Cyprus, and by WinMob Tehnologies Ltd, Niosia, Cyprus.Referenes[1℄ Doument Objet Model (DOM) Level 1 Spei�ation. W3C Reommendation 1, Otober 1998.http://www.w3.org/TR/REC-DOM-Level-1/.[2℄ D. Aksoy, M. Altinel, R. Bose, U. Cetintemel, M.J. Franklin, J. Wang, and S.B. Zdonik. Re-searh in Data Broadast and Dissemination. In Proeedings of the First International Con-

ferene on Advaned Multimedia Content Proessing, AMCP '98, Leture Notes in ComputerSiene, pages 194{207. Springer Verlag, 1999.[3℄ T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer protool { HTTP/1.0. Teh-nial report, W3C, May 1996. http://www.w3.org/Protools/HTTP/1.0/spe.html.[4℄ C. M. Bowman, P. B. Danzig, D. R. Hardy, U. Manber, and M. F. Shwartz. The HarvestInformation Disovery and Aess System. In Proeedings of the Seond International WWWConferene, 1995.[5℄ S. Brin and L. Page. The Anatomy of a Large-Sale Hypertextual (Web) Searh Engine.Computer Networks and ISDN Systems, 30(1{7):107{117, 1998.[6℄ S. Chakrabarti, M. van den Berg, and B. Dom. Foused Crawling: A New Approah to Topi-Spei� Web Resoure Disovery. In 8th World Wide Web Conferene, Toronto, May 1999.[7℄ J. Cho, H. Garia-Molina, and L. Page. EÆient rawling through URL ordering. In Proeedingsof the Seventh International WWW Conferene, pages 161{172, April 1998.[8℄ M. Dikaiakos. FIGI: Using Mobile Agent Tehnology to Collet Finanial Information on Inter-net. In Workshop on Data Mining in Eonomis, Marketing and Finane. Mahine Learningand Appliations. Advaned Course on Arti�ial Intelligene 1999 (ACAI '99). European Co-ordinating Committee on Arti�ial Intelligene and Helleni Arti�ial Intelligene Soiety, July1999.[9℄ P. Farjami, C. Gorg, and F. Bell. Advaned Servie Provisioning Based on Mobile Agents.Computer Communiations, (23):754{760, 2000.[10℄ J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leah, and T. Berners-Lee.Hypertext Transfer protool { HTTP/1.1. Tehnial report, W3C, June 1999.http://www.w3.org/Protools/rf2616/rf2616.html.[11℄ J. Gosling, B. Joy, and G. Steele. The Java Language Spei�ation. Addison-Wesley, 1996.[12℄ S. Gribble, E. Brewer, J. Hellerstein, and D. Culler. Salable, Distributed Data Strutures forInternet Servie Constrution. In Proeedings of the Fourth Symposium on Operating SystemsDesign and Implementation (OSDI 2000), 2000.[13℄ S. Gribble, M. Welsh, R. von Behren, E. Brewer, D. Culler, N. Borisov, S. Czerwinski, R. Gum-madi, J. Hill, A. Joseph, R.H. Katz, Z.M. Mao amd S. Ross, and B. Zhao. The Ninja Arhite-ture for Robust Internet-Sale Systems and Servies. To appear in a Speial Issue of ComputerNetworks on Pervasive Computing, 2001.

[14℄ A. Heydon and M. Najork. Merator: A Salable, Extensible Web Crawler. World Wide Web,2(4):219{229, Deember 1999.[15℄ G. Huk, I. Maherius, and P. Fankhauser. PDOM: Lightweight Persisteny Support for theDoument Objet Model. In Proeedings of the 1999 OOPSLA Workshop Java and Databases:Persistene Options. Held on the 14th Annual ACM SIGPLAN Conferene on Objet-OrientedProgramming Systems, Languages, and Appliations (OOPSLA '99). ACM, SIGPLAN, Novem-ber 1999.[16℄ Tympani Development In. NetAttahe Pro. http://www.tympani.om/produts/NAPro.html,2000.[17℄ S. Lempinen. Jtidy. http://lempinen.net/sami/jtidy.[18℄ Steve Meloan. The Java HotSpotTM Performane Engine: An In-Depth Look. Tehnial report, Sun Mirosystems, June 1999.http://developer.java.sun.om/developer/tehnialArtiles/Networking/HotSpot/.[19℄ Sun Mirosystems. The Java HotSpot TM Server VM. http://java.sun.om/produts/hotspot/,1999.[20℄ R. Miller and K. Bharat. SPHINX: A Framework for Creating Personal, Site-spei� WebCrawlers. In Proeedings of the Seventh International WWW Conferene, pages 161{172, April1998.[21℄ GMD-IPSI XQL Engine. http://xml.darmstadt.gmd.de/xql/.[22℄ S.H. Phatak, V. Esakki, B.R. Badrinath, and L. Iftode. Web&: An Arhiteture for Non-Interative Web. Tehnial Report DCS-TR-405, Department of Computer Siene, RutgersUniversity, Deember 1999.[23℄ D. Raggett. Clean up your Web pages with HTML TIDY.http://www.w3.org/People/Raggett/tidy/.[24℄ S. Raghavan and H. Garia-Molina. Crawling the Hidden Web. In VLDB 2001: 27th Interna-tional Conferene on Very Large Data Bases, September 2001. To appear.[25℄ VMGEAR. OptimizeIt!: The Java Ultimate Performane Pro�ler. http://www.vmgear.om/.[26℄ D. Wessels and K. Cla�y. Evolution of the NLANR Cahe Hierarhy: Global Con�gurationChallenges. Tehnial report, NLANR, Otober 1996. http://www.nlanr.net/Papers/Cahe96/.[27℄ T. W. Yan and H. Garia-Molina. SIFT - A Tool for Wide-Area Information Dissemination. InProeedings of the 1995 USENIX Tehnial Conferene, pages 177{186, 1995.

[28℄ D. Zeinalipour-Yazti. eRACE: an eXtensible Retrieval, Annotation and Cahing Engine, June2000. B.S. Thesis. In Greek.

