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The evolvement of software development paradigms is following the industry needs for applica-
tions that adhere to the notions of modularity, distribution, elasticity and robustness.' The birth of
the microservice paradigm has emerged from common (best) practices adopted by leading com-
panies such as Netflix, Amazon, and Uber, which embraced DevOps concepts into their software
development lifecycles and deployed their coded artifacts seamlessly across cloud platforms, al-
most exclusively through containerized execution environments.

Microservices can be seen as the resulting set that arises from the decomposition of an application
into smaller pieces (services), which tend to run as independent processes and have the ability to
intercommunicate using lightweight communication mechanisms.? Applications embracing this
paradigm are sliced into services organized around discrete business capabilities with the bound-
aries between these units usually comprised of platform-agnostic APIs that expose the core capa-
bilities of each service. Large systems are then composed of many (micro) services, whereby
communication between services is a central ingredient.

Although not a necessity, microservices are packaged and deployed through containerized
runtimes offering portability across private and public cloud deployments. This setting is ideal for
data harvesting and manipulation, content streaming, recommendation services and the Internet of
Things, where software is compiled and offered in the cloud as a service from a set of smaller,
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loosely-coupled and independent features. Microservice adoption is surging with RedHat’s 2017
State of Microservices? report indicating that all but 30% of respondents are embracing the micro-
service paradigm to re-architect existing applications and for new projects.

In the cloud era, as applications grow by adding more services, security enforcement and dynamic
resource allocation become significant challenges. At scale, these challenges can be addressed
with autonomicity. Through automation, microservices are equipped with the ability to continu-
ously control the underlying infrastructure, thus turning into services that can be harnessed pro-
grammatically at runtime. However, traditional monitoring is ineffective for ephemeral,
decomposed and highly dynamic microservices deployed over shared execution environments. On
the other hand, finer service-granularity means more moving parts and hence an increased com-
plexity of auto-scaling, potentially more points of failure, and more possibilities for serious secu-
rity violations and privacy leaks. For example, if you are a startup comprised of a handful of
developers, you may quickly release a prototype but once the hype is out, if security is not properly
dealt with, you are a few clicks away from loosing your user base. In turn, if you are in the content
streaming business, either this may be music, video or even micro-blogging, a few seconds of
unanticipated content buffering are enough to dreadfully impact your subscription-based revenue
stream. This challenge set creates the need for devising new solutions with the ability to design,
run and monitor microservices at scale while also achieving the anticipated autonomicity and se-
curity of the application runtime on top of the underlying programmable cloud infrastructure.

MICROSERVICES

Microservices are now being studied as part of the cloud infrastructure. But, why are microservices
so important to the future of DevOps? Unlike software-heavy VMs, microservices can share the
core of the underlying OS, which enables faster deployments in the cloud without diminishing
performance. Thus, instead of all application services being part of one enormous monolith, busi-
ness capabilities are self-contained with well-defined interfaces that avoid synchronous and block-
ing-calls whenever possible. By adopting the DevOps “ideology,” separate software teams are
each responsible for different aspects of the end application allowing both the team and software
core to develop, test, handle failures and scale independently.

What is more, continuous integration and continuous delivery of frequent and incremental changes
to the codebase, a task almost impossible to achieve for monoliths, is possible as small units are
easier to develop, deploy and manage, while a software bug only affects a single service and not
the entire application. In turn, each service dealing with a specific feature may utilize its own data
back-end to optimize storage, processing and acquisition to fill its needs. Thus, for each (micro-)
service one can understand, alter and write new code without knowing anything about the inter-
nals of its peers, because services and their peers interact strictly through APIs and hence, there is
no need for sharing or exposing data structures, schemata, or other internal object representations.

It becomes evident that to support small and independently deployable services, infrastructure-
wise lightweight mechanisms, scalability and portability are of essence. These requirements can
be met by using containers. Containerization allows applications to share a single host OS in a
portable manner. Because containers do not have the overhead of an entire guest OS, something
absolutely required by VMs, their size is significantly smaller which makes them easier to migrate,
faster to boot and less demanding on memory. As a result, it is possible to run many more contain-
ers on the same infrastructure rather than VMs.* Development with the use of containers is perfect
for microservices, as complex applications are split into discrete and modular units where e.g., a
database backend might run in one container while the front-end runs in a separate one. Hence,
containers reduce the management complexity because any potential problem or change related to
one service does not require an overhaul of the overall application.

Containers are not a new technology. They have been part of the Linux ecosystem for more than
a decade with the goal to offer resource isolation at the OS level through kernel namespaces and
control groups (cgroups). In brief, namespaces deal with resource isolation for a single process,
while cgroups manage access for groups of processes. Nonetheless, for a containerized application
to run, specialized software must coordinate and streamline the process on top of the OS. The most
popular engine to create, ship and run Linux containers is by far Docker with RightScale’s 2017
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State of the Cloud® report declaring that Docker is the golden standard for containerized technol-
ogies. Docker automates the packaging of an application and its dependencies within a portable
container that can run on any Linux OS. This enables flexibility for the packaged application which
can run without customization on laptops, virtual machines, bare-metal and the cloud. To advance
container standardization, Docker has even contributed its container format and runtime environ-
ment to the Open Container Initiative, which is operated by the Linux Foundation.

CHALLENGES

The plethora of toolsets entering the evolving microservice landscape, although overwhelming,
are lowering the innovation barriers towards microservice adoption for software teams of all sizes.
However, there are still a number of challenges that must be overcome to make this adoption
simpler and faster. Most importantly, moving the microservice model from evaluation to produc-
tion and then scaling to meet demand, is a whole different picture.

In particular:

e Monitoring and Diagnostics: Most traditional monitoring tools, even in the cloud era,
are designed for slowly evolving execution environments with application instances re-
sembling one another and residing on VMs. While containers ease application deploy-
ment, monitoring them is an open challenge as there is no guest OS to deploy a
monitoring agent alongside running services. An agent must be run through the con-
tainer engine or be part of the application itself, which means that monitoring should be
an integral part of application design and cannot be decided after deployment. Granu-
larly slicing an application into services inherently introduces heterogeneity which re-
quires full customization of the monitoring process to perform diagnostics and receive
helpful insights. However, customization must be automated and become part of the
continuous delivery process for immutable container environments. In turn, there are
significant costs and actual runtime overheads® when monitoring ephemeral, decom-
posed and highly dynamic applications over virtualized and shared execution environ-
ments.

e Auto-Scaling and Optimization: Scaling to meet demand is a challenge for most appli-
cations and microservices are no exception. Although microservices and containers are
inherently easier to scale by simply creating more copies of the services overwhelmed
by demand (horizontal scaling), significant profiling is required to optimize perfor-
mance, cost and quality as one must identify what should be monitored, when to scale,
and even, how to scale.” If this is not already a daunting challenge, then also consider
the difficulty in determining what is the best optimization strategy to follow and how to
investigate, in a distributed and granular deployment, if one service endpoint is cur-
rently affecting the performance of another service endpoint.

e Orchestration in Hybrid Cloud Deployments: Software teams are increasingly choos-
ing to work with multiple cloud offerings and/or cloud providers so as to meet their
goals. Although containers indeed provide both flexibility and portability by being able
to run—ideally—anywhere, this does not mean a deployment can span across geo-
graphic regions, cloud availability zones and different cloud sites.® This challenging
task requires devising complex placement strategies for determining where each service
should run and provision the appropriate infrastructural resources and also requires con-
structing and managing a cross site overlay network. This introduces severe propagation
delays and other network performance issues for service communication especially
when network traffic must pass across datacenter boundaries.

¢ Security Enforcement and Privacy Protection: Decomposing an application into ser-
vices with each service inter-communicating over the network raises significant security
risks. This can lead to severe privacy leaks with code vulnerabilities lurking in the di-
versified application stack in both in-house written code and third-party libraries. This
requires dealing at scale with the security of numerous self-contained services, while
also having to maintain identity and access management across the entire deployment
instead of just a single monolith. However, mitigating new sets of security rules at
runtime without service disruption is another challenge, if one is not to shut down thou-
sands of instances for alteration.
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Figure 1. High-level overview of the Unicorn framework.

ENTER THE UNICORN FRAMEWORK

To overcome these challenges and take full advantage of the rapidly evolving microservices land-
scape, the newly released Unicorn Framework (http://unicorn-project.eu) aims to provide software
teams of all sizes with a powerful toolset to simplify the design, development and management of
scalable and secure applications over multi-cloud containerized execution environments. To
achieve this, its novel offerings are available to software teams as a unified DevOps-as-a-Service
platform (see Figure 1). In respect to microservices, Unicorn facilitates microservice adoption by
providing through its DevOps offerings both a cloud IDE plugin for application development and
packaging and a dashboard for runtime management. Going beyond the offerings of existing tool-
sets, Unicorn puts particular emphasis on both security and elastic scaling enabled through policy
and constraint definition, as well as, through continuous risk and vulnerability assessment, and
complements its solution with advanced orchestration and monitoring capabilities.

The Unicorn Dashboard

Microservices are an integral part of the shift in ICT towards a DevOps culture, in which DevOps
teams work closely together to manage an application over its lifecycle, and go through rapid and
continuous releases. The Unicorn framework in its philosophy is not different. Through the Uni-
corn Dashboard -either one is a developer, product engineer or an administrator- collaborative
development and management of the application lifecycle is conducted via two perspectives.

The Development Perspective supports software teams to develop secure and scalable micro-
services using Design Libraries to annotate their source code with policy and constraint definitions.
This allows for minimal code intrusion while hiding the complexity behind the operation of each
code annotation in the background to free developers by not affecting code development, debug-
ging and software releases. Most importantly, developers are not constantly derailed and can focus
on core application development leaving security enforcement, privacy restrictions, monitoring
and elastic scaling to the handlers behind the design libraries and the Unicorn platform.

Although the design libraries can be downloaded and used without any further tools required, these
libraries along with the Unicorn packaging and deployment toolset are available through the newly
released Unicorn plugin for the popular and open-source Eclipse Che cloud IDE. This provides
one collaborative and unified environment in the same place where developers write their code,
allowing them to share workspaces, ship applications to the cloud, and then, manage the lifespan
of their deployments. In addition, the Unicorn plugin provides developers with the capability to
search for OS and runtime libraries that will extend their container environments, a tool currently
absent from the fast-evolving container community.

Concurrently, but in the background, the Unicorn IDE plugin enriches a topology-aware descrip-
tive model denoted as the service graph which is automatically compiled and maintained as the
developer describes her application. This topology-aware description is not based on yet-another
domain specific language but in contrary it adheres to the Topology and Orchestration Specifica-
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tion for Cloud Applications’ (TOSCA) maintained by OASIS and is compiled as a Docker Com-
pose file which holds the configuration for multi-container Docker applications. This Unicorn en-
riched Compose file can still be used in any other Docker environment where Unicorn-related
constraints and policies, along with their benefits, will be ignored. This means Unicorn enriched
Docker Compose files still adhere to the container paradigm requirement that a description must
be portable and run anywhere.

Through the Management Perspective administrators and product managers can modify and define
additional policies and constraints that will govern the operation of deployed applications through
the graphical service graph editor. Administrators can also view in an intuitive graphical manner
collected metrics, potential security incidents and vulnerabilities, and manage the lifecycle of their
deployments.

--1 Kubernetes Networking [-------------"~---=---------- Kubernetes Networking |-~

Kub
Master

Kub

App 1 App 2 App 3 App 1 App 2 App 3 Master

Bin/Libs| | 8in/ Libs Bin/Libs| | Bin/ Libs

| Docker Container Engine | | Docker Container Engine |

| Operating System (Cere0S, Ubuntu cora) | I Operating System (Cere0S, Ubuniu cora) |

S -

Figure 2. Unicorn orchestration.

The Unicorn Platform

The Unicorn Platform acts as link between the Unicorn Cloud IDE Plugin and the Multi-Cloud
Execution Environment and is the layer where the business logic of Unicorn is applied. Its main
tasks include:

e The validation of service graph submitted for deployment to detect potential problems
such as antagonizing policy restrictions and circular dependencies.

e The interpretation and binding of the annotated source code.

¢ The enforcement of privacy, security and elastic scaling policies at runtime and com-
pile-time based on the annotated policies and constraints.

e The application lifecycle management of deployed applications

e The orchestration, monitoring and management of both the underlying programmable
infrastructure, network fabric and multi-cloud containerized execution environment.

When embracing Unicorn, there is no requirement to learn new runtimes or proprietary technolo-
gies, which is always a challenging task for software teams and requires investing in training and
expertise. Unicorn is not another runtime, container or language but a service built on top of pop-
ular and open-source technologies. In particular, as the service graph description is translated into
a Unicorn-enhanced Docker Compose file, Unicorn makes use of the Docker Engine to run mi-
croservices in containers. However, while the Docker Engine is sufficient for small deployments,
it is limited to a single host environment.

To support the orchestration of large-scale distributed containerized deployments spanning across
multiple hosts, Unicorn makes use of Kubernetes, a popular and open-source orchestration tool
for containers running on a cluster of machines (see Figure 2). This tool provides the ability to
automatically provision and de-provision containerized applications running on a single cluster
but it has two important limitations. Specifically, Kubernetes lacks the ability to (de-)provision
infrastructure resources and does not support deployments spanning across multiple cloud sites.
To address these limitations, the Unicorn Platform extends Kubernetes with cloud adaptors to
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probe and program the underlying infrastructure. Most importantly, Unicorn introduces cross-
cloud network overlay management along with low-cost and self-adaptive monitoring to reliably
handle over Software Defined Networks network accessibility and reduce the monitoring intensity
along with traffic propagation.

In regard to elastic scaling, Unicorn provides DevOps teams with an extensible policy-based def-
inition toolset to tap into the auto-scaling mechanisms offered by the underlying cloud offerings
in order to estimate and assess the elasticity behavior and scaling effects of their deployed appli-
cations. Finally, Unicorn adopts the lightweight and library-based CoreOS as its underlying OS to
provide policy-based and secure out-of-the-box support for the Docker runtime engine.

CONCLUSION

The adoption of microservices enables teams to rapidly develop and deploy modern, distributed,
cloud-based applications. The use of microservices and containers is a new standard for the cloud
computing industry which is becoming a trend in IoT as well. The technology shift that has been
observed to microservices and containers is expected to continue and increase. As many organi-
zations adopt the microservice paradigm and migrate their apps to the cloud, new programming
tools must be developed. In this context, the Unicorn framework adopts and extends popular and
open-source technologies to provide software teams with a unified DevOps-as-a-Service platform
that simplifies the design, deployment and management of scalable and secure applications over
multi-cloud containerized execution environments.
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