
FAILRANK: TOWARDS A UNIFIED GRID

FAILURE MONITORING AND RANKING

SYSTEM

D. Zeinalipour-Yazti∗, K. Neocleous‡, C. Georgiou‡, M.D. Dikaiakos‡
∗ School of Pure and Applied Sciences, Open University of Cyprus, CY-1304, Nicosia, Cyprus
‡ Department of Computer Science, University of Cyprus, CY-1678, Nicosia, Cyprus

zeinalipour@ouc.ac.cy and {kyriacos, chryssis, mdd}@cs.ucy.ac.cy

Abstract The objective of Grid computing is to make processing power as accessible and
easy to use as electricity and water. The last decade has seen an unprecedented
growth in Grid infrastructures which nowadays enables large-scale deployment
of applications in the scientific computation domain. One of the main challenges
in realizing the full potential of Grids is making these systems dependable.

In this paper we present FailRank, a novel framework for integrating and
ranking information sources that characterize failures in a grid system. After the
failing sites have been ranked, these can be eliminated from the job scheduling
resource pool yielding in that way a more predictable and dependable infrastruc-
ture. We also present the tools we developed towards evaluating the FailRank
framework. In particular, we present the FailBase Repository which is a 38GB
corpus of state information that characterizes the EGEE Grid for one month in
2007. Such a corpus paves the way for the community to systematically uncover
new, previously unknown patterns and rules between the multitudes of parameters
that can contribute to failures in a Grid environment. Additionally, we present an
experimental evaluation study of the FailRank system over 30 days which shows
that our framework identifies failures in 91% of the cases.

Keywords: failure monitoring, FailRank, FailBase repository.

248 MAKING GRIDS WORK

1. Introduction

Grids have emerged as wide-scale, distributed infrastructures that comprise
heterogeneous computing and storage resources, operating over open standards
and distributed administration control [10–11]. Grids are quickly gaining popu-
larity, especially in the scientific sector, where projects like EGEE (Enabling

Grids for E-sciencE) [6], TeraGrid [20] and Open Science Grid [18] , provide
the infrastructure that accommodates large experiments with thousands of sci-
entists, tens of thousands of computers, trillions of commands per second and
petabytes of storage [6, 20, 18]. At the time of writing, EGEE assembles over
250 sites around the world with more than 30,000 CPUs and 5PB of storage,
supporting over 100 Virtual Organizations.

While the aforementioned discussion shows that Grid Computing will play a
vital role in many different scientific domains, realizing its full potential will
require to make these infrastructures dependable. As a measure of depend-
ability of grids we use the ratio of successfully fulfilled job requests over the
total number of jobs submitted to the resource brokers of a grid infrastruc-
ture. The FlexX and Autodock data challenges of the WISDOM [25] project,
conducted in August 2005, have shown that only 32% and 57% of the jobs com-
pleted successfully (with an "OK" status). Additionally, our group conducted
a nine-month characterization of the South-Eastern-Europe resource broker
(rb101.grid.ucy.ac.cy) in [4] and showed that only 48% of the submitted
jobs completed successfully. Consequently, the dependability of large-scale
grids needs to be improved substantially.

Detecting and managing failures is an important step toward the goal of
a dependable grid. Currently, this is an extremely complex task that relies
on over-provisioning of resources, ad-hoc monitoring and user intervention.
Adapting ideas from other contexts such as cluster computing [16], Internet
services [14–15] and software systems [17] seems also difficult due to the
intrinsic characteristics of grid environments. Firstly, a grid system is not
administered centrally; thus it is hard to access the remote sites in order to
monitor failures. Moreover we cannot easily encapsulate failure feedback
mechanisms in the application logic of each individual grid software, as the
grid is an amalgam of pre-existing software libraries, services and components
with no centralized control. Secondly, these systems are extremely large; thus,
it is difficult to acquire and analyze failure feedback at a fine granularity. Lastly,
identifying the overall state of the system and excluding the sites with the
highest potential for causing failures from the job scheduling process, can be
much more efficient than identifying many individual failures. Of course the
latter information will be essential to identify the root cause of a failure [15], but
this operation can be performed in a offline phase, and thus it is complementary
to our framework.

FailRank: Failure Monitoring and Ranking System 249

In the FailRank architecture, feedback sources (i.e., websites, representative
low-level measurements, data from the Information Index, etc.) are continuously
coalesced into a representative array of numeric vectors, the FailShot Matrix

(FSM). FSM is then continuously ranked in order to identify the K sites with the
highest potential to feature some failure. This allows the system to automatically
exclude the respective sites from the job scheduling process.

The advantages of our approach are summarized as follows: (i) FailRank is a
simple yet powerful framework to integrate and quantify the multi-dimensional
parameters that affect failures in a grid system; (ii) our system is tunable,
allowing system administrators to drive the ranking process through user-defined
ranking functions; (iii) we eliminate the need for human intervention, thus
our approach gives space for automated exploitation of the extracted failure
semantics; (iv) we expect that the FailRank logic will be implemented as a filter
outside the Grid job scheduler (i.e., Resource Broker or Workload Management
System), thus imposing minimum changes to the Grid infrastructure.

2. Monitoring Failures in a Grid Environment

In this subsection we overview typical failure feedback sources provided in
a grid environment. These sources contain information that is utilized by our
system in order to deduct, in an a priori manner, the failing sites. Our discussion
is in the context of the EGEE infrastructure, but similar tools and sources exist
in other grids [20, 18].

Meta-information sources: Several methods for detecting failures have been
deployed so far. Examples include (for a detailed description see [22]): (i)
Information Index Queries: these are performed on the Information Service
and enable the extraction of fine-grained information regarding the complete
status of a grid site; (ii) Service Availability Monitoring (SAM) [26]: a reporting
web site that is maintained for publishing periodic test-job results for all sites of
the infrastructure; (iii) Grid statistics: provided by services such as GStat [12];
(iv) Network Tomography Data: these can be obtained by actively pinging and
tracerouting other hosts in order to obtain delay, loss and topological structure
information. Network tomography enables the extraction of network-related
failures; (v) Global Grid User Support (GGUS) ticketing system [7]: system
administrators use this system to report component failures as well as needed
updates for sites. Such tickets are typically opened due to errors appearing in
the SAM reports; (vi) Core Infrastructure Center (CIC) broadcasts [3]: allow
site managers to report site downtime events to all affected parties through a
web-based interface; and (vii) Machine log-files: administrators can use these
files to extract error information that is automatically maintained by each grid
node.

250 MAKING GRIDS WORK

Active benchmarking: Deploying a number of lower level probes to the re-
mote sites is another direction towards the extraction of meaningful failure
semantics. In particular, one can utilize tools such as GridBench [21, 23], the
Grid Assessment Probes [2] and DiPerF [5], in order to determine in real time
the value of certain low level and application-level failure semantics that can
not be furnished by the meta-information sources. For example, GridBench
provides a corpus of over 20 benchmarks that can be used to evaluate and rank
the performance of Grid sites and individual Grid nodes.

Both the Meta-Information Sources and the Active Benchmarking approaches
have a major drawback: their operation relies heavily on human intervention.
As Grid infrastructures become larger, human intervention becomes less feasible
and efficient. As we would like Grid Dependability to be scalable, our proposed
architecture does not rely on human intervention but instead provides the means
for acquiring and analyzing the data from the above resources in an automated

manner.

3. The FailRank System

In this section we describe the underlying structure that supports the FailRank
system. We start out with an architecture overview and then proceed with basic
definitions in order to formalize our description. We follow with the description
of the failure ranking mechanism deployed in FailRank.

3.1 Architecture Overview

The FailRank architecture (see Figure 1), consists of four major components:
(i) a FailShot Matrix (FSM), which is a compact representation of the parameters
that contribute to failures, as these are furnished by the feedback sources; (ii)
a temporal sequence of FSMs defines an FSM timeseries which is stored on
local disk; (iii) a Top-K Ranking Module which continuously ranks the FSM
matrix and identifies the K sites with the highest potential to run into a failure
using a user defined scoring function; and (iv) a set of data exploration tools
which allow the extraction of failure trends, similarities, enable learning and
prediction. FailRank is tunable because it allows system administrators and
domain experts to drive the ranking process through the provisioning of custom
scoring functions.

3.2 Definitions and System Model

Definition (FailShot Matrix (FSM)): Let S denote a set of n grid sites (i.e.
S = {s1, s2, ..., sn}). Also assume that each element in S is characterized by
a set of m attributes (i.e. A = {a1, a2, ..., am}). These attributes are obtained

FailRank: Failure Monitoring and Ranking System 251

FailRank ArchitectureGrid Sites
Feedback

Sources

FSM

Top-K

Ranking

Module

FSM Timeseries (Storage)

Data

Exploration

Tools

R

e

s

u

l

t

s

Figure 1. The FailRank System Architecture: Feedback sources are continuously coalesced
into a representative array of numeric vectors, the FailShot Matrix (FSM). FSM is then con-
tinuously ranked in order to identify the K sites with the highest potential to feature some
failure.

Site CPU DISK QUEUE NET FAIL

s1=“USC-LCG2” 0.63 0.61 0.01 0.28 0.35
s2=“TAU-LCG2” 0.66 0.91 0.92 0.56 0.58
s3=“ELTE” 0.48 0.01 0.16 0.56 0.54
s4=“UCL-CCC” 0.99 0.90 0.75 0.74 0.67
s5=“CY01-KIMON” 0.44 0.07 0.70 0.19 0.67

Table 1. The FailShot Matrix (FSM) coalesces the failure information, available in a variety of
formats and sources, into a representative array of numeric vectors.

by the feedback sources described in Section 2. The rows in Table 1 represent
the sites while the columns represent the respective attributes. The jth attribute
of the ith site is denoted as sij . The j-th attribute specifies a rating (or score)
which characterizes some grid site si (i ≤ n) at a given time moment. These
ratings are extracted by custom-implemented parsers, which map the respective
information to real numerics in the range [0..1] (1 denotes a higher possibility
towards failure). The m × n table of scores defines the FailShot Matrix (FSM),
while a Site Vector is any of the n rows of FSM.

A graphical illustration for some synthetic example is given in Table 1.
The figure shows five sites {s1, ..., s5} where each site is characterized by
five attributes: CPU (% of cpu units utilized), DISK (% of storage occupied),
QUEUE (% of job queue occupied), NET (% of dropped network packets) and
FAIL (% of jobs that don’t complete with an "OK" status).

Definition (FSM Timeseries): A temporal sequence of l FailShot Matrices
defines an FSM Timeseries of order l.

Keeping a history of the failure state for various prior time instances is
important as it enables the automatic post-analysis of the dimensions that

252 MAKING GRIDS WORK

contributed to a given failure, enables the prediction of failures and others.
It is important to notice that the FSM timeseries can be stored incrementally
in order to reduce the amount of storage required to keep the matrix on disk.
Nevertheless, even the most naive storage plan of storing each FSM in its
entirety, is still much more storage efficient than keeping the raw html/text
sources provided by the feedback sources. In constructing FailBase, described
in Section 4, we found that the FSM representation saves us approximately
350GB of storage per month.

3.3 The Ranking Module

Although the snapshot of site vectors in FSM greatly simplifies the repre-
sentation of information coming from different sources, observing individually
hundreds of parameters in real time in order to identify the sites that are running
into trouble is still a difficult task. For example a typical LDAP query to the
Grid Information Service returns around 200 attributes. Monitoring these pa-
rameters in separation is a cumbersome process that is very expensive in terms
of human resources, can rarely lead to any sort of a priori decision-making and
is extremely prone to mistakes and human omissions. Instead, automatically
deducting the sites with the highest potential to suffer from failures is much
more practical and useful. Since this information will be manipulated with high
frequencies, we focus on computing the K sites with the highest potential to
suffer from failures rather than finding all of them (K is a user-defined parame-
ter). Therefore we don’t have to manipulate the whole universe of answers but
only the K most important answers, quickly and efficiently. The answer will
allow the Resource Broker to automatically and dynamically divert job submis-
sions away from sites running into problems as well as notify administrators in
advance (compared to SAM & tickets) to take preventive measures for the sites
more prone to failures.

Scoring Function: In order to rank sites we utilize some aggregate scoring
function which is provided by the user (or system administrator). For ease of
exposition we use, similarly to [1], the function:

Score(si) =
m

∑

j=1

wj ∗ sij (1)

where sij denotes the score for the jth attribute of the ith site and wj (wj > 0)
a weight factor which calibrates the significance of each attribute according to
the user preferences. For example if the CPU load is more significant than the
DISK load, then the former parameter is given a higher weight. Should we need
to capture more complex interactions between different dimensions of FSM we
could construct, with the help of a domain expert, a custom scoring function or

FailRank: Failure Monitoring and Ranking System 253

CPU DISK QUEUE NET FAIL RANK

s4, .99 s2, .91 s2, .92 s4, .74 s4, .67 s4, 4.05
s2, .66 s4, .90 s4, .75 s2, .56 s5, .67 s2, 3.63
s1, .63 s1, .61 s5, .70 s3, .56 s2, .58 s5, 2.07
s3, .48 s5, .07 s3, .16 s1, .28 s3, .54 s1, 1.88
s5, .44 s3, .01 s1, .01 s5, .19 s1, .35 s3, 1.75

Table 2. The Sorted (by column score) FSM (Sorted-FSM) is utilized by the top-K engine to
continuously identify K highest ranked answers, where K is a user parameter.

we could train such a function automatically using historic information. It is
expected that the scoring function will be much more complex in a real setting
(e.g. a linear combination of averages over n′ correlated attributes, where
n′ << n) and we are currently working towards evaluating these alternatives.

Example: In order to stimulate our description, consider the example of Ta-
ble 1. In order to infer the overall rank for two site vectors, such as s2 =
{0.66, 0.91, 0.92, 0.56, 0.58} and s4 = {0.99, 0.90, 0.75, 0.74, 0.67}, we ap-
ply the scoring function with wj = 1 (i.e. all dimensions are of equal impor-
tance), and find that s2 = 3.63 and s4 = 4.05.

In order to minimize the computation of the scoring function, which poten-
tially has to join hundreds of columns in each run, we will utilize the Threshold

Algorithm (TA) [9]. TA is one of the most widely recognized algorithms for
finding the K highest rank answers in database and middleware scenarios. Sup-
pose that we are interested in finding the K = 1 objects with the highest score.
TA starts out by performing a parallel access to the n lists of the Sorted-FSM
(see Table 2). While an object si is seen, TA performs a random access to the
other lists to find the exact score for si using the given scoring function. In
our working example the exact score would be computed for the two objects
in the first row (i.e. s4 = 4.05 and s2 = 3.63) since sorted access is executed
on a row-at-a-time basis. It then computes a threshold value τ as the sum of
all scores in the first row (i.e. τ = .99 + .91 + .92 + .74 + .67 = 4.23). Since
τ is larger than both scores of s4 and s2, the TA algorithm performs another
iteration in which the threshold τ is refined as the sum of scores across the
second row (i.e. τ = 3.54). It also computes the exact score for s5 = 2.07 (the
only unresolved object in the second row). Now the algorithm finds at least
K=1 objects above the threshold (i.e. s4≥τ and s2≥τ) and therefore terminates.
It is easy to prove that no other object can have a score above s4 thus the score
function calculation can be omitted for these objects.

4. The EGEE FailBase Repository

In the previous section we outlined the main components of the FailRank
architecture. In this section we present the tools we developed in order to
evaluate the proposed architecture. In particular, we present the FailBase

254 MAKING GRIDS WORK

Repository which is a 38GB corpus of state information that characterizes
the EGEE Grid for one month in 2007. Such a corpus paves the way for the
community to systematically uncover new, previously unknown patterns and
rules between the multitudes of parameters that can contribute to failures in a
grid environment.

4.1 Overview

FailBase currently contains 32 days of monitoring data obtained from tests
executed on the EGEE Grid Infrastructure between 16/3/2007 and 17/4/2007.
The trace was collected at the High Performance Computing systems Lab
(HPCL) at the University of Cyprus. We utilized a dual Xeon 2.4GHz CPU
machine with 1GB of RAM connected to the European Academic Network
(GEANT) at 155Mbps.

The trace maintains information for 2,565 Computing Element (CE) queues.
It is important to note that resource brokers perform the matchmaking between
the requests and the available and appropriate queues at the CE-queue granular-
ity rather than on individual nodes. Thus, we focus on characterizing failures
at the same granularity as well. Each CE-queue is stored in an individual
folder that currently contains 72 attributes (i.e., files) and each file charac-
terizes the CE-queue it is stored in. For example, ce101.grid.ucy.ac.cy-
jobmanager-lcgpbs-atlas is the directory that contains measurements spe-
cific to the ATLAS experiment job queue that is maintained on the Computing
Element ce101.grid.ucy.ac.cy.

Each of the files in the CE-queue folders can be thought of as a timeseries
(i.e., a sequence of [timestamp,value] pairs) for the given attribute using a time
step of approximately 1 to 10 minutes (varies according to the type of source).
We currently share the Failbase repository with the researchers of our group
using the UNIX filesystem interface which maintains openness and portability.
In the future we have plans to store the information in a relational database on
the EGEE grid in order to allow researchers from other institutes to access and
manipulate the stored information using the expressive power of the Structured
Query Language (SQL).

4.2 Meta-information Sources

We shall next describe the adopted methodology for acquiring the 72 failure-
related attributes from the respective meta-information sources:

(i) Service Availability Monitoring (SAM): We obtained approximately 260MB
of data in raw html form (one html file for each CE) using the UNIX system
utility curl. We then processed these pages using a set of perl scripts and
generated 18 attributes. These attributes contain information such as the version

FailRank: Failure Monitoring and Ranking System 255

number of the middleware running on the CE, results of various replica manager
tests and results from test job submissions.

(ii) Information Index Queries (BDII): We used the ldapsearch system utility
tool to perform approximately 2 million LDAP queries on the Information Index
hosted on bdii101.grid.ucy.ac.cy. We then performed a projection in order to
extract another 15 failure-related attributes. This yielded attributes such as the
number of free CPUs and the maximum number of running and waiting jobs
for each respective CE-queue.

(iii) Grid Statistics (GStat): We downloaded, again using curl, and parsed data
files from the monitoring website of Academia Sinica. From these files we
generated 19 attributes for each given center and then replicated these attributes
to all the respective queues. The 19 attributes contain information such as
the geographical region of a Resource Center, the available storage space on
the Storage Element used by a particular CE, and results from various tests
concerning BDII hosts.

(iv) Host sensor data (GridICE): We performed over 500,000 LDAP queries
on every EGEE Computing Element host that published GridICE [8] sensor
data (i.e., on ≈184 computing element hosts). The interval between consecutive
probes was 10 minutes. We were able to extract 18 attributes of interest that
includes information such as the total and available sizes of RAM, virtual
memory and filesystem-specific information.

(v) Network Tomography Data (SmokePing): We obtained a 313MB snapshot
of the gPing database from ICS-FORTH (Greece) for the studied period. The
database contains network monitoring data for all the EGEE sites. From this
collection we measured the average round-trip-time (RTT) and the packet loss
rate relevant to each South East Europe CE (see Figure 2) which therefore
yielded 2 additional attributes. In order to make the information consistent
with the FailBase repository schema, we replicated files from the CE-level to
CE-queue-level using a one-to-one mapping function.

5. Experimental Evaluation

In this section we describe an experimental study of the FailRank framework
as well as our methodology.

5.1 Methodology

We have implemented a trace-driven tool in GNU C++ which processes the
Failbase repository and then simulates the execution of the FailRank framework.
In particular, we replay the trace in our simulator and at each timestamp we iden-
tify the K sites that might fail to respond. We will denote these (timestamp,
siteID) tuples as the Identified Set (Iset). The Iset is constructed by select-

256 MAKING GRIDS WORK

 0

 20

 40

 60

 80

 100

 120

 140

2927252321191715131197531

R
T

T
 (

s
e
c
o
n
d
s
)

Time (days)

Round Trip Time

CE-queue: ce01.kallisto.hellasgrid.grjobmanager-pbs-ops

RTT Delay

 0

 1

 2

 3

 4

 5

 6

 7

 8

2927252321191715131197531

P
a

c
k
e

t
L

o
s
s
 (

P
e

rc
e

n
ta

g
e

 %
)

Time (days)

Packet Loss

CE-queue: ce01.kallisto.hellasgrid.grjobmanager-pbs-ops

Packet Loss

Figure 2. Round-Trip-Time (left) and Packet Loss (right) for the CE-queue
ce01.kallisto.hellasgrid.gr-jobmanager-pbs-ops. These attributes are two of the
72 attributes maintained for the 2,565 CE-queues in the Failbase Repository.

ing the K highest-ranked answers from the execution of the scoring function
described in Section 3.3 with equal weights on the FSM table.

Note the resource broker can compute the Iset directly from the FSM matrix,
before the timestamp at which the actual error happens, thus such an approach
provides an a priori failure detection mechanism. In order to assess this claim
and validate that the Iset corresponds to the actual sites that have failed to
respond, we need a set of (timestamp, siteID) tuples at which real site failures
happened. We shall denote such a set as the Real Set (Rset) and we construct it
by combining the 18 attributes provided by the SAM service (described in 4.2)
using the scoring function described in Section 3.3. That yields an average
score per site for every timestamp. For each timestamp, we then again choose
the K sites which have the highest score. We define the penalty, for not finding
the correct sites at timestamp i, using a set-theoretic notation as follows:

Penaltyi = |Rset − Iset| (2)

where |Rset| = |Iset| = K and the penalty at each timestamp i is defined as
the cardinality of the set difference Rset − Iset. In our experimentation, we
shall also use the Aggregate Penalty (i.e., A =

∑timestamps
i=1 Penaltyi), which

provides a measure of overall efficiency for the Iset in all timestamps.
Having identified the correct Iset sites, our objective is to blacklist these sites

and exclude them from the job scheduling process, decreasing in that way the
number of failures.

5.2 Evaluating FailRank

In this subsection we evaluate the efficiency of the FailRank framework in
identifying the sites that will fail. In particular, we obtain the Iset using two
alternative strategies: i) FailRank Selection, which utilizes the FSM matrix and
selects the K = 20 sites (≈ 10% of all sites) that maximize the scoring function

FailRank: Failure Monitoring and Ranking System 257

 0

 5

 10

 15

 20

 25

 0 5000 10000 15000 20000 25000 30000 35000 40000

P
e

n
a

lt
y
 (

#
 s

it
e

s
 n

o
t

id
e

n
ti
fi
e

d
)

Time (minutes)

Penalty for selecting the K=20 worst sites (Random vs. Failrank Selection)

Random Selection
Failrank Selection (naive scoring)

Figure 3. FailRank selection vs. Random selection: FailRank identifies the site that have
failed as opposed to Random which always identifies very few of the K=20 sites.

of Section 3.3 with equal weights; and ii) Random Selection, which does not
utilize the FSM matrix and simply selects the K = 20 sites at random.

We then measure the respective penalty using our provided definition. Note
that for this experiment we utilize a subset of the Failbase repository (i.e., 197
OPS queues monitored for 32 days) for which we had the largest number of
available attributes. We also apply a spline interpolation smoothing between
consecutive time points in our graph in order to facilitate presentation.

Figure 3 illustrates that FailRank selection always has an extremely low
penalty (i.e. on average 2.14±1.41 with A = 92, 596) while Random selection
is always very close to 20 (i.e. on average 18.19± 3.5 with A = 786, 148). We
can conclude that FailRank misses the correct sites in only 9% of the cases while
Random misses the correct results in 91% of the cases. Another observation is
at time instances 6000, 16000 and 39000, both selection curves drop to zero.
This is attributed to the fact that our meta-information trace contained missing
values at the given points (i.e., Iset = Rset = ∅). One final observation is
that the Random selection curve is in some cases above 20. This is attributed
to the fact that the cardinality of the Rset might be bigger than K, instead of
equal to K, in certain cases. This is explained as follows: to construct the
Rset we identified the K highest ranked tuples for each timestamp. In some
cases the Kth tuple has an equal score to the Kth + 1 tuple (or maybe even
the Kth + 2 tuples, etc.). As a result, |Rset| might be bigger than |Iset| which
consequently might yield a penalty larger than K (e.g. consider the case where
Rset ∩ Iset = ∅).

258 MAKING GRIDS WORK

6. Conclusions & Future Work

In this paper we introduce FailRank, a novel framework for integrating and
ranking information sources that characterize failures in a grid system. This
perspective is to our knowledge new and fits well the computation model of
grid infrastructures. Another advantage is that FailRank streamlines the very
complex task of monitoring large-scale distributed resources in an automated
manner. In the future we plan to provide more elaborate ranking algorithms
and perform an in-depth assessment of our prototype system under development.

Acknowledgements: This work was supported in part by the European Union
under projects CoreGRID (# IST-2002-004265) and EGEE (#IST-2003-508833).
The authors would like to thank Yannis Ioannou for his valuable help in con-
structing the Failbase repository and Charalampos Gkikas for providing access
to the Hellas-FORTH gPing data.

References

[1] Bruno N., Gravano L. and Marian A., “Evaluating Top-K Queries Over Web Accessible
Databases”, In ICDE 2002.

[2] Chun G., Dail H., Casanova H., and Snavely A., “Benchmark probes for grid assessment”,
In IEEE IPDPS 2004.

[3] “CIC”, http://cic.gridops.org/

[4] Da Costa G., Orlando S., Dikaiakos M.D., “Nine months in the life of EGEE: a look from
the South”, In IEEE MASCOTS 2007.

[5] Dumitrescu C., Raicu I., Ripeanu M., Foster I., “DiPerF: An automated DIstributed
PERformance testing Framework”, In IEEE/ACM Grid 2004.

[6] “EGEE”, http://www.eu-egee.org/.

[7] “Global Grid User Support (GGUS) ticketing”, https://gus.fzk.de/pages/home.php

[8] “GridICE”, http://grid.infn.it/gridice/

[9] Fagin R., Lotem A. and Naor M., “Optimal Aggregation Algorithms For Middleware”, In
PODS 2001.

[10] Foster I. and Kesselman C., “The Grid: Blueprint for a New Computing Infrastructure”,
Elsevier, 2004.

[11] Foster I., Kesselman C., and Tuecke S., “The Anatomy of the Grid: Enabling Scalable
Virtual Organizations”, In Intl. J. Supercomputer Applications, 15(3):200–222, 2001.

[12] Grid Statistics (GStat) http://goc.grid.sinica.edu.tw/gstat/

[13] Junqueira, F. P., and Marzullo, K., “The virtue of dependent failures in multi-site systems”,
In HotDep 2005.

[14] Kiciman E. and Fox A., “Detecting Application-Level Failures in Component-based
Internet Services”, In IEEE Transactions on Neural Networks, 2004.

[15] Kiciman E. and Subramanian L., “Root Cause Localization in Large Scale Systems”, In
HotDep 2005.

[16] Krishnamurthy S., Sanders W.H., Cukier M.: “A Dynamic Replica Selection Algorithm
for Tolerating Timing Faults”, In DSN 2001.

[17] Locasto M.E., Sidiroglou S., and Keromytis A.D., “Application Communities: Using
Monoculture for Dependability”, In HotDep 2005.

FailRank: Failure Monitoring and Ranking System 259

[18] “OSG”, http://www.opensciencegrid.org.

[19] Raman R., Livny M., Solomon M.H., “Matchmaking: An extensible framework for
distributed resource management”, In Cluster Computing, Vol 2, pp 129-138, 1999.

[20] “TeraGrid”, http://www.teragrid.org/

[21] Tsouloupas G., Dikaiakos M.D., “GridBench: A Tool for the Interactive Performance
Exploration of Grid Infrastructures”, In Journal of Parallel and Distributed Computing,
Vol 67, pp 1029-1045, 2007.

[22] Neokleous K., Dikaiakos M.D., Fragopoulou P., Markatos E.P., “Failure Management in
Grids: The Case of the EGEE Infrastructure”, In Parallel Processing Letters (in press,
Dec. 2007).

[23] Tsouloupas G. and Dikaiakos M.D., “Grid Resource Ranking using Low-level Perfor-
mance Measurements.”, In Euro-Par 2007.

[24] Vlachos M., Hadjieleftheriou M., Gunopulos D. , Keogh E., “Indexing multi-dimensional
time-series with support for multiple distance measures” In KDD 2003.

[25] “WISDOM”, http://wisdom.eu-egee.fr/

[26] “Service Availability Monitoring (SAM)”, http://goc.grid.sinica.edu.tw/gocwiki/SAM

