
Parallel Processing Lettersc World Scienti�c Publishing CompanyFUNCTIONAL ALGORITHM SIMULATION OF THE FASTMULTIPOLE METHOD: ARCHITECTURAL IMPLICATIONSMARIOS D. DIKAIAKOSDepartments of Astronomy and Computer Science-Engineering,University of Washington, ASTRONOMY, Box 351580, Seattle, WA 98195, U.S.A.andANNE ROGERSDepartment of Computer Science, Princeton UniversityPrinceton, NJ 08544, U.S.A.andKENNETH STEIGLITZDepartment of Computer Science, Princeton UniversityPrinceton, NJ 08544, U.S.A.ABSTRACTFunctional Algorithm Simulation is a methodology for predicting the computationand communication characteristics of parallel algorithms for a class of scienti�c problems,without actually performing the expensive numerical computations involved. In thispaper, we use Functional Algorithm Simulation to study the parallel Fast MultipoleMethod (FMM), which solves the N-body problem. Functional Algorithm Simulationprovides us with useful information regarding communication patterns in the algorithm,the variation of available parallelism during di�erent algorithmic phases, and upperbounds on available speedups for di�erent problem sizes. Furthermore, it allows us topredict the performance of the FMM on message-passingmultiprocessors with topologiessuch as cliques, hypercubes, rings, and multirings, over a wider range of problem sizes andnumbers of processors than would be feasible by direct simulation. Our simulations showthat an implementation of the FMM on low-cost, scalable ring or multiring architecturescan attain satisfactory performance.Keywords: Functional Algorithm Simulation. N-Body Problem. Performance Modeling.1. IntroductionFunctional Algorithm Simulation [5,14] is a new methodology for predicting thecomputation and communication characteristics of parallel algorithms for a class ofscienti�c problems, without actually performing expensive numerical computations.To explore the Functional Algorithm Simulation we built the Functional AlgorithmSimulation Testbed (FAST), a software prototype system that performs approxi-mate simulations of parallel executions. FAST runs on uniprocessor workstationsand has been used to evaluate a number of interesting and important scienti�c al-1



gorithms [1,8,10] mapped onto message-passing multiprocessors. In this paper wepresent a case-study conducted with FAST for the parallel Fast Multipole Method[1], which solves the N-Body problem in two dimensions. We use the information de-rived with FAST to evaluate and analyze the relative performance of the algorithmon di�erent interconnection topologies.Performance is critical in parallel computing. Gaining an understanding of per-formance issues for challenging parallel algorithms like the FMM, however, requiresthe description and analysis of their parallel execution on realistic sets of data.This is a di�cult task for many reasons, including the high complexity of thesealgorithms, the great volume of data needed to describe computations and commu-nications performed during parallel execution, and the low availability of high-endmultiprocessor systems.Numerous research projects have collected and studied communication and com-putation patterns from challenging applications [3,4,17]. Most proceed by conduct-ing instrumentation and performance monitoring on top of parallel software andhardware platforms. This approach has its obvious merits as it addresses the per-formance assessment of programs running on existing systems. It is accompanied,however, by inevitable drawbacks: the conclusions sought may be inuenced by theunderlying architectures, programming models, and implementation. Experimenta-tion with di�erent interconnection topologies requires the porting of applications todi�erent multiprocessors, thus incurring a very high cost. Moreover, it is practicallyimpossible to study the scalability of parallel algorithms and architectures on topof existing systems. In this paper, we show how Functional Algorithm Simulationaddresses these issues in a study of the Fast Multipole Method. The remainder ofthe paper is organized as follows: Section 2 presents the basic concepts of Func-tional Algorithm Simulation and the structure of FAST. Section 3 describes the FastMultipole Method and the study of the FMM with FAST; additionally, it presentsan assessment of the parallel performance of the FMM on di�erent interconnectionnetworks. Finally, Section 4 summarizes our results and conclusions.2. Functional Algorithm SimulationFunctional Algorithm Simulation [13] models and evaluates parallel executionsby reproducing the skeletons of parallel computations and using them to extracttheir basic computation and communication patterns. It is basically a method forapproximately simulating real parallel executions. It can also be considered as anaccurate simulation of a theoretical model that accounts for communication costsand limited communication bandwidth, such as LogP [6]. The common algorithmicproperty necessary for Functional Algorithm Simulation to apply is the ability todetermine the set of expensive calculations and data exchanges from input infor-mation, at the initialization phase of the algorithm, before the actual numericalcomputations take place. Another underlying assumption is that the initializationphase takes an insigni�cant portion of the overall parallel time. Both assumptionsare valid for many important scienti�c algorithms [1,8,9,10].2



  SEQUENTIAL
SPECIFICATION

PARTITIONING
    SCHEME

1st Phase

 INTERMEDIATE
REPRESENTATION

PARSER

TASK−FLOW
     GRAPH

 INPUT
VALUES

ALGORITHMIC
 PARAMETERS

FRONT−END

CLUSTERING
HEURISTIC

MAPPING
HEURISTIC

NUMBER OF
PROCESSORS

  HARDWARE
PARAMETERS

TASK−FLOW
    GRAPH

PARALLEL−EXECUTION
              GRAPH

CLUSTERING

PARALLEL−EXECUTION
              GRAPH

INTERCONNECTION
        NETWORK
 EVENT−DRIVEN
       SIMULATOR

INTERCONNECTION
           NETWORK

ARCHITECTURE
INDEPENDENT
     PROFILES

PARALLEL−EXECUTION
          PROFILES

   MESSAGE−PASSING
INTERFACE PARADIGM

MAPPING TO
  "LIMITED"
      CLIQUE

MAPPING TO
"ABUNDANT"
     CLIQUE

Figure 1: The Front-End and the Back-End of FAST.2.1. Fast Algorithm Simulation Testbed (FAST)FAST is a prototype system running on workstations and implementing the prin-ciples of Functional Algorithm Simulation. Its key structure is a weighted task-owgraph that describes computations occurring during the execution of the algorithmsstudied and reveals all medium-grain parallelism available. The di�erence betweenthis approach and exact simulation (trace-driven or direct) lies in the fact that oursystem does not simulate every single instruction, but only procedure calls thatwould be performed in a real execution. FAST relies on knowledge of the algorithmand of the data-structures it constructs when provided with some speci�c set ofinput data. It uses this knowledge to interpret procedure calls as \black boxes"with known processing times and dependency constraints.By not doing the numerical calculations, FAST achieves signi�cant savings interms of processor cycles and disk space. For example, a Functional Algorithm Sim-ulation of an instance of the SIMPLE computational uid dynamics benchmark [10]took 0.63 secs to complete on a Sparcstation. The same instance took 9.8 secs torun on one iPSC/2 node. Considering that exact simulation is approximately 100 to1000 times slower than actual execution [12], we deduce that Functional AlgorithmSimulation decreases the simulation time by two to three orders of magnitude. Thesesavings enable us to increase the exibility of simulations, study the performanceand scalability of algorithms on parallel machines with thousands of processors,and compare the performance of di�erent interconnection networks under realistictra�c loads.FAST is split in two parts: a front-end and a back-end (see Figure 1), describedin the following sections. A detailed description, along with information on validat-ing its accuracy and its application on other algorithms can be found in [5,13,14].3



2.2. Front-EndThe task-ow graph generation is accomplished by the front-end in two phases(see Figure 1, left). The �rst one depends on the algorithm studied: given a se-quential implementation, the user modi�es it by inserting code that will producedynamically the set of calculations and communications that de�ne the correspond-ing parallel execution. The modi�ed program is the �rst phase of FAST's front-endfor the speci�c algorithm. Running this program on some appropriate input con-�guration produces an architecture-independent Intermediate Representation (IR)of the parallel execution. The Intermediate Representation is given in terms of asimple intermediate language comprised of IR-operations and Send/Receive com-munication primitives. Each IR-operation is an abstraction of a \medium-grain"group of successive numerical instructions. These groups correspond to the ba-sic computational blocks of the algorithm. Send/Receive primitives correspond todata-dependences between IR-operations and represent the data-ow.In the second phase of the front-end, a parser transforms the Intermediate Repre-sentation into a weighted task-ow graph which follows the Macro-Dataow modelof computation [11]. Task-nodes in the graph contain a number of IntermediateRepresentation primitives. Their \boundaries" are de�ned by Send and Receiveprimitives occurring in the IR. The tasks start executing upon receipt of all incom-ing data and continue to completion without interruption. Upon completion theirresults are forwarded to adjacent nodes. Edges correspond to Send-Receive pairsand represent the data dependencies between the nodes. The annotation of thetask-ow graph is straightforward. Nodes are assigned the sum of the costs of theircorresponding IR-operations. Edges are assigned weights that represent the numberof bytes \carried" by those edges from their source to their destination nodes.2.3. Back-EndThe back-end of FAST (see Figure 1, right) receives the output from the front-end and maps the task-ow graph onto a message-passing multiprocessor architec-ture. The mapping process is accomplished in a number of successive steps: �rst,FAST maps the task-ow graph onto an idealized architecture with a number ofprocessors equal to the number of tasks, forming a fully-connected network (\abun-dant" clique). The resulting graph is called the parallel-execution graph and issubsequently passed through clustering, a stage that seeks to minimize the commu-nication overhead of the parallel execution, without sacri�cing parallelism [11,16].Clustering is NP-Complete [11]; therefore, FAST provides several di�erent cluster-ing heuristics [15]. After clustering, FAST performs a mapping of the clusteredparallel-execution graph onto a message-passing architecture with a number of pro-cessors speci�ed by the user. The mapping problem is also NP-complete [11]. Tomap the task-clusters onto processors, FAST includes another set of heuristics [15].A few di�erent interconnection schemes are available in the current version ofFAST: a \limited" clique (a clique with a limited number of processors), a ring,various multirings, and a binary hypercube.4



Figure 2: Decomposition of a two-dimensional space of particles and the corre-sponding quadtree created by the Fast Multipole Method.In addition to the number of processors and the network topology, the userprovides our system with a set of hardware parameters. These parameters areused to transform the weights assigned to nodes and edges of the task-ow graphinto processing times and message latencies. They include cycles-per-instructioncounts, clock-speeds, communication bandwidth, communication overhead, etc. Inthe current version of FAST, we used hardware parameters characteristic of INTEL'siPSC/2 and iPSC/860 multiprocessors.3. Functional Algorithm Simulation of the FMM3.1. The Fast Multipole MethodThe Fast Multipole Method (FMM) [1] solves the N-body problem, i.e., it calcu-lates the forces exerted on each particle by the whole ensemble of particles lying ina 2- or 3-dimensional data space. These forces determine new locations for the par-ticles in each small time-step. Forces can be either gravitational or coulombic. TheFMM has wide applications in astrophysics, molecular dynamics and computationaluid dynamics.The brute-force method for N-body computations evaluates all pairwise inter-actions and thus its sequential complexity is O(N2) per time-step, where N is thenumber of particles (bodies). The FMM evaluates all interactions to within a �xedroundo� error and has an average time-complexity per time-step of O(N). Its cen-tral strategy is the hierarchical decomposition of the data-space in the form of aquadtree (or octtree for the 3-dimensional case). This hierarchical decompositionis used to cluster particles at various spatial lengths and compute interactions withother clusters that are su�ciently far away by means of series expansions (see Fig-ure 2).For a given input con�guration of particles, the sequential FMM �rst decom-poses the data-space in a hierarchy of blocks and computes local neighborhoods andinteraction-lists involved in subsequent computations. Then, it performs two passeson the decomposition tree. The �rst pass starts at the leaves of the tree, computingmultipole expansion coe�cients for the gravitational �eld. It proceeds towards theroot accumulating the multipole coe�cients at intermediate tree-nodes. When theroot is reached, the second pass starts. It moves towards the leaves of the tree, ex-changing data between blocks belonging to the neighborhoods and interaction-lists5



calculated at tree-construction. At the end of the downward pass all long-rangeinteractions have been computed; subsequently, nearest-neighbor computations areperformed to take into consideration interactions from nearby bodies. Finally, short-and long-range interactions are accumulated and the total forces exerted upon par-ticles are computed. The algorithm repeats the above steps and simulates theevolution of the particle system for each successive time-step.In hierarchical N-body methods in general, and FMM in particular, the largestportion of the computation time is spent in the force calculation procedure, thatis, in the operations performed during the traversal of the decomposition tree. Thetime spent in the tree-construction phase is not signi�cant. Moreover, parallelismcan only be exploited within one time-step.As mentioned earlier, FAST does not perform the bulk of the numerical cal-culations involved in the Fast Multipole Method computation. Hence, it has nomeans of computing the new locations of particles after one time-step. Executionof the FMM for a sequence of time-steps, however, can be studied with a sequenceof FAST-simulations on input con�gurations of particles that correspond to thetime-steps of interest. These con�gurations can be extracted from real N-Bodysimulations.3.2. Setup of SimulationsWe have employed two di�erent input con�gurations of particles for our simu-lations. One corresponds to an approximately uniform particle distribution, repre-sentative of Molecular Dynamics applications, and the other corresponds to non-uniform particle distributions (Plummer), typical of Astrophysics simulations.In addition to particle locations, two algorithmic parameters must be speci�edat the input of FAST: one is the number of multipole expansion coe�cients soughtand the other is the number of particles per quadtree leaf. In the simulationspresented here, the size of the multipole expansions was set to ten coe�cients. Thisguarantees highly accurate results for the corresponding actual FMM computationand, at the same time, maintains the low time complexity of the Fast Multipolealgorithm with respect to the brute-force method.The choice of the quadtree granularity a�ects many aspects of the parallel exe-cution: the available parallelism and its granularity, communication overhead, thecomputation-to-communication ratio, and the overall parallel time. From our mea-surements with FAST, we concluded that small granularities (fewer than ten parti-cles per quadtree leaf) lead to relatively high communication overhead, very smallcomputation-to-communication ratios, and thus to larger parallel times. On theother hand, granularities larger than twenty particles per leaf result in larger se-quential tasks and limit the available parallelism. In this paper, we present resultsderived with a quadtree granularity of �fteen particles per leaf, unless stated other-wise. This choice achieves good parallel time for the hardware parameters adopted,over a wide range of problem sizes. 6
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Figure 3: Data about the limiting scalability of the parallel FMM3.3. Pro�ling of the FMMThe clustering stage of FAST (Figure 1) creates the clustered parallel-executiongraph, which describes the processing of the Multipole Method on a parallel archi-tecture with a clique interconnection and as many processors as task-clusters. Fromthe parallel-execution graph we can easily estimate the parallel time of the execu-tion, and thus measure the speedups achieved on an abundant clique and assess thescalability of the parallel algorithm. In Figure 3 (left), we present parallel execu-tion times for problems of 2,000 to 40,000 bodies distributed according to uniformand Plummer distributions. The times in this diagram correspond to the minimumestimates from a set of FAST experiments with di�erent clustering heuristics.In Figure 3 (right), we present the available speedup sustained by a parallelimplementation of the Fast Multipole Method, as the problem size increases andabundant hardware resources are accessible. This represents an estimate of thescalability of the algorithm with respect to problem size. In that sense, the parallelFMM is scalable because for larger problem sizes, greater speedups can be achievedif more processors, memory, and links are available. The parallel FMM wouldnot be scalable if speedups leveled o� for larger problem sizes; this would signalthe existence of signi�cant sequential parts, rapidly increasing with the problemsize. Moreover, we notice that in the non-uniform case (Plummer distribution) theavailable speedup increases more slowly with problem size than in the uniform case:non-uniformity results in higher and \tighter" decomposition trees and thus in lessavailable parallelism.From the parallel-execution graph we can also extract the pro�le of active tasksand busy links during parallel execution on the abundant clique. This pro�le re-veals characteristics inherent to the algorithm at hand and is not inuenced bypartitioning and mapping to a speci�c multiprocessor. Experiments with di�er-7
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Figure 4: Execution Pro�les for a 15,000-particles problem (Uniform distribution).ent clustering heuristics led to similar results and conclusions (see [5]). Figure 4presents such a pro�le for a parallel execution of the Fast Multipole Method on aproblem instance with 15,000 particles distributed according to the uniform distri-bution, �fteen particles per quadtree-leaf, and a ten coe�cient approximation. Inthis case we used a clustering technique combining heuristics from [11] and [16].Pro�les from non-uniform distributions have similar shape.From these plots it is clear that the parallel execution has three phases: a shortphase at the beginning is de�ned by a large number of active tasks indicating a highdegree of available parallelism. This is followed by a long period during which theavailable parallelism is very low. The execution ends in a third, long phase wherethe number of active tasks is high. Similar remarks hold for the channel utilizationsin the abundant clique. The �rst phase of the parallel execution corresponds to theupward step of the Fast Multipole algorithm: in the beginning, many tasks calculatethe multipole coe�cients at the leaves of the decomposition tree in parallel; theresults are sent to tasks accumulating these coe�cients in nodes at lower levelsof the tree and so on. As the algorithm moves towards the root, the numberof internal nodes decreases logarithmically and thus the number of parallel tasksdrops very quickly. In the second phase, the algorithm moves from the root ofthe tree to its nodes, exchanging messages between nodes belonging to the sameneighborhoods. The available parallelism is very small initially and increases asthe algorithm approaches the quadtree leaves. In the �nal phase, nearest-neighborcomputations and message exchanges take place.Another interesting observation relates to resource utilization of the abundantclique. For instance, the parallel-execution graph of the above example has 2384clusters and therefore, the corresponding abundant clique would have 2384 pro-cessors and 5; 681; 072 unidirectional links. However, the average number of busyprocessors over the parallel execution time is 308, that is, 12% of the processors inthe abundant clique. The average number of used links over time is as low as 51,8



Figure 5: Matrix Communication Patterns for the 15,000-particle problem.which corresponds to 0:08% of the total number of links. Therefore, it is conceivablethat a much sparser architecture with fewer processors could achieve essentially thesame speedups as the abundant clique.This can be seen also from Figure 5: the plot to the left presents communicationpatterns for the case where bodies are distributed uniformly, whereas the plot tothe right presents the patterns extracted from the non-uniform distribution case.The horizontal and vertical axes correspond to processors of the abundant clique,that is, to task-clusters of the clustered parallel-execution graph. Points in the plotrepresent the occurrence of messages sent between the task-clusters; darker pointscorrespond to larger numbers of messages between the corresponding clusters.3.4. Hypercube, Ring and Multiring Performance for the Fast Multipole MethodThe communication patterns plotted in Figure 5 show that destination clusters ofmessages dispatched from any task-cluster tend to belong to small neighborhoodsand have numberings close to the number assigned to the source cluster. Thisobservation suggests that a ring interconnectionmight achieve speedups comparableto those achieved on a clique.Using FAST, we mapped the clustered parallel-execution graphs onto clique,hypercube, and ring interconnections with various numbers of processors. Fromthese experiments, we found that ring interconnections represent a cost-e�ectivearchitectural choice for implementing the Fast Multipole Method in parallel. Forexample, in a 10,000-particle simulation with 15 particles per quadtree leaf and tencoe�cients, a 128-processor ring achieves 50% of the speedup of the clique withonly 1:57% of its links. In a 256-processor con�guration, the ring achieves the 40%of the clique speedup with only the 0:78% of its links.Speedups measured on rings are not as high as the ones achieved on cliques,simply because the ring is a much sparser interconnection and thus link-contentioncauses extra delays in message propagation times. This is con�rmed by the dia-grams in Figure 6, which display the average message delay and message congestionmeasured with FAST for the 10; 000-particle example (Plummer distribution). Con-9
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Figure 6: Contribution of Congestion to Message Latency. Note the di�erence inthe y-axis (time scale) of the two diagrams.gestion �gures correspond to average time spent by each message while waiting inqueues because of link and network interface contention. From these graphs it isclear that congestion constitutes the largest portion of message latencies measuredin the rings. On the other hand, communication contention in the cliques is prac-tically nonexistent.The above remarks suggest that spending extra hardware to reduce ring con-tention might result in substantially improved speedups for the ring interconnection.A straightforward way to reduce contention is by using multiring instead of single-ring communication networks. Building such interconnections is feasible and muchcheaper than building cliques or hypercubes with the same number of processors.Our functional simulations proved that multirings are also cost-e�ective: Fig-ure 7 presents the speedups reported by FAST for the 10; 000-particle problemmapped on hypercubes and multirings with two to sixteen rings. It is clear that anincrease in the number of rings improves signi�cantly the attained speedups. More-over, it enhances the cost-e�ectiveness of the ring implementation: for instance, ina 128-processor machine running the parallel FMM on 10; 000 particles distributedaccording to the Plummer model, the four-ring achieves 83% of the speedup of theclique with only 6:3% of its links. As another example, the 512-processor four-ringachieves a speedup slightly larger than the one attained by a 256-processor clique.4. ConclusionsIn this paper, we described a case study of a parallel version of the Fast MultipoleMethod with FAST, a software system implementing a new approach for modelingthe parallel execution of a class of important scienti�c applications. FAST enabledus to perform an architecture-independent analysis of the algorithm over a largenumber of realistic data sets and for various algorithmic parameters. Furthermore,it provided us with useful information regarding communication patterns occurring10
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Figure 7: Multiring Performance.in the parallel execution, the variation of available parallelism during di�erent algo-rithmic phases, and upper bounds on available speedups for di�erent problem sizes.This information suggested that an interconnection topology as simple as the ringcan achieve satisfactory performance.Subsequently, FAST allowed us to estimate the parallel performance of the FMMon message-passing multiprocessors with hypercube, ring and multiring intercon-nection topologies. Performance �gures derived from the mapping of the FMM tocliques were used to evaluate the e�ectiveness of the ring and multiring implementa-tions. Our simulations showed that an implementation of the Multipole algorithmon scalable ring or multiring architectures is cost-e�ective.AcknowledgementsThis work was supported by NSF grants MIP-8912100, MIP-9201484, and ASC-9110766.References1. L. Greengard and V. Rokhlin, A fast algorithm for particle simulation, Journal ofComputational Physics, 73 (1987), 325{348.2. J.P. Singh, J.L. Hennessy and A. Gupta, Implications of Hierarchical N-body Meth-ods for Multiprocessor Architecture, CSL-TR-92-506, Computer Systems Lab,Stanford University, 1992.3. R. Cypher, A. Ho, S. Konstantinidou and P. Messina, Architectural Requirements ofParallel Scienti�c Applications with Explicit Communication, in Proc., 20th Annual11
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