
GridBench: A Workbench
for Grid Benchmarking

George Tsouloupas and Marios D. Dikaiakos

Department of Computer Science,
University of Cyprus, 1678 Nicosia, Cyprus

{georget, mdd}@ucy.ac.cy

Abstract. In this article we present the GridBench, an extensible tool
for benchmarking and testing Grid resources. We give an overview of the
GridBench services and tools that provide easy invocation of benchmarks
and management of results. We also show how the tool can be used
in the analysis of results and how the measurements can be used to
complement the information provided by Grid information services and
used as a basis for resource selection. In order to illustrate the usage of the
tool, we describe scenarios for using the GridBench framework and the
GridBench “virtual workbench” to perform benchmarking experiments
and analyze the results.

1 Introduction

High Performance Computing and it’s users have greatly benefited from bench-
marking over the years; benchmarking can be just as beneficial for computational
Grid computing. Benchmarking metrics published on the Grid can provide a ba-
sis for users to assess the “quality of service” expected of a Grid resource or
a Virtual Organization providing computational services at a given cost. Grid
benchmarks can be used by middleware developers to compare different mid-
dleware solutions such as job submission services, resource allocation policies,
scheduling algorithms, etc. Grid-oriented benchmarks can serve as an evalua-
tion of the fitness of a collection of distributed resources for running a specific
application. As common programming models or paradigms start to emerge for
programming in Grid environments, Grid benchmarks can serve as a feasibility
study of running a general class of applications (or applications following a sim-
ilar programming paradigm). A key aspect of Grids and Grid resources is their
dynamic nature and Grid benchmarks can help study the effect of this dynamic
nature of the Grid on application performance. Additionally, they can provide
some insight to the properties of Grid Architectures.

The heterogeneity of Grid platforms and the dynamic nature of Grid re-
sources makes the archival and interpretation of measured metrics a complex
task and raises questions about the overall applicability of benchmarking. Ex-
isting platforms are largely under continuous re-design and development, with
very limited cross-platform interoperability, making the specification, submis-
sion, and management of jobs is a tedious process. Measuring and/or monitoring

P.M.A. Sloot et al. (Eds.): EGC 2005, LNCS 3470, pp. 211–225, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



212 G. Tsouloupas and M.D. Dikaiakos

performance metrics at the application level of the Grid is currently a target of
ongoing research work. Performance measurements are affected by a variety of
factors, including the characteristics of resources allocated for a particular run,
the time-dependent latency and bandwidth of shared Internet links used for
communication between remote sites, the performance capacity of middleware
libraries used at the application level, etc.

In the remainder of this article we describe the GridBench tool for bench-
marking and testing Grids. In the next section we describe our current imple-
mentation of the Gridbench architecture, services as well as the GridBench User
Interface and how we used it to perform experiments on a mid-sized Grid infras-
tructure. Finally we provide some use-case scenarios and results.

2 GridBench

Grids and Grid Resources in general are characterized by static information
provided by Grid Information systems. Grid end users and central Grid Services
(such as resource brokers) need a better source of information on which to base
decisions. These decisions mainly refer to resource allocation or scheduling de-
cisions. The use of results from micro and macro-benchmarks can improve the
decision making process, but at this point there is no easy, automated way to
obtain, manage and deliver these measurements. GridBench is aimed at fulfilling
this purpose.

Fig. 1. A generic view of the target infrastructure

GridBench assumes an underlying hardware infrastructure that loosely ad-
heres to the one depicted in figure 1. This basic infrastructure, a Grid Virtual
Organization (VO) consists of a set of geographically distributed sites connected
over a shared network (i.e. the Internet). Each site contains a Computing El-
ement which manages a set of “Worker Nodes” for performing computations.
Typically a CE is associated with a “Storage Element”, which is an inter-
face to mass storage, and to which it has direct (Local Area Network) access
(e.g. via the Network File System). The Grid VO also contains some VO ser-
vices such as Grid Information Services, a resource broker, VO membership
server etc.



GridBench: A Workbench for Grid Benchmarking 213

GridBench, as a tool for benchmarking grids, has two main objectives:

1. Generate metrics that characterize the performance capacity of resources be-
longing to a Virtual Organization and spanning across multiple Grid nodes,
in terms of computational power, file-transfer speed, inter-process commu-
nication bandwidth, application-kernel performance, scalability etc.

2. Provide a tool for researchers that wish to investigate various aspects of Grid
performance, using well-understood kernels that are representative of more
complex applications deployed on the Grid. Having access to a corpus of such
kernels and being able to easily specify and dispatch parameterized runs of
these kernels on Grids, facilitates the characterization of factors that affect
application and infrastructure performance, the quantitative comparison of
different middleware solutions, algorithms for scheduling, resource allocation,
etc.

To address the two main objectives mentioned, Gridbench has two con-
stituents: the GridBench Benchmark Suite and the GridBench Benchmarking
Framework. The GridBench Benchmark suite is a collection of new and exist-
ing micro-benchmarks, micro-kernel benchmarks and application benchmarks;
its purpose is to generate the metrics that will characterize resources and vir-
tual organizations. The GridBench suite takes a layered approach as shown
in figure 2. The multi-layered structure of the Grid (shown in figure 1) calls
for performance measurements at the different layers of the Grid. GridBench
seeks to investigate performance properties of the following “layers” of the Grid
architecture:

1. The Resource, for example a cluster node or a Storage Element;
2. The Site, which is a collection of resources interconnected through a local-

or system-area network, and belonging to one administrative domain(e.g. a
cluster of PCs or a symmetric multiprocessor system);

3. The Grid Constellation, which includes multiple sites constituting the com-
puting platform of a Virtual Organization.

4. The Middleware, that is the software layer providing access to shared re-
sources of a Grid constellation and which gives the programmer the Grid as
a shared resource.

The suite includes benchmarks for CPU (Floating Point and Integer op-
erations), memory bandwidth, cache performance, detecting available physi-
cal memory size, interconnect performance (MPI), synthetic benchmarks and
application kernels. A detailed description of the GridBench suite is beyond
the scope of this article, more details on the Gridbench suite can be found
in [10, 11].

2.1 The GridBench Back-End

The GridBench Benchmarking Framework provides facilities for defining and
running benchmarks as well as archiving, retrieving and analyzing the results of
the GridBench benchmark suite.



214 G. Tsouloupas and M.D. Dikaiakos

Fig. 2. A layered approach to benchmarking, with micro-benchmarks, micro-kernel
benchmarks and application benchmarks on the x-axis, and resource, site and grid
constellation on the y-axis

GridBench was designed to be as independent of specific middleware as pos-
sible. The design is open enough to allow easy replacement of the underlying
middleware by the use of Middleware plugins. Currently implemented are plu-
gins for Globus and the LCG2-compatible [8] EU CrossGrid middleware. The
user can use the Globus MDS [5] for information retrieval, and either the EU
CrossGrid [6, 7] Resource Broker or the Globus GRAM for job execution.

2.2 Overview

Figure 3 outlines the software architecture of GridBench and (at a very high
level) indicates which components interact with each other. This is indicated by
a line connecting the two interacting components. The main components of this
architecture are:

Fig. 3. The GridBench architecture overview. An outline of system’s major components
and their interaction



GridBench: A Workbench for Grid Benchmarking 215

– the GridBench Suite
– is made up of the benchmark executables (e.g. Linpack).

– the GridBench UI
– Interacts with the Archiver to retrieve benchmark models1 and results.
– Defines and submits benchmarks to the Orchestrator.
– Analyzes results, create charts.

– the Orchestrator web-service
– Accepts benchmark definitions generated by the GridBench GUI (or any
other source) and manages their execution by the use of the appropriate
Middleware Plugin.
– Monitors the job status for each benchmark job and on completion re-
trieves and archives the resulting metrics.

– the Archiver web-service;
– Maintains a repository of benchmark results and model definitions.
– Provides an interface to a relational database back-end.

– the Middleware Plugin
– Middleware-specific job execution, output retrieval.
– Translation of XML descriptions of benchmarks to a job description lan-
guage;
– There are currently two implementations of the Middleware Plugin inter-
face: one for Globus and one for the EU-CrossGrid middleware.

– the Monitoring Client (collects monitoring information);
– Collects infrastructure monitoring data (as specified in each GBDL) by
using different Monitoring Clients.
– Infrastructure monitoring data can be used to interpret benchmark results
based on the state of the infrastructure during benchmark execution.

2.3 The GridBench Definition Language

The GridBench Definition Language was introduced to the system for several
reasons:

– To allow easy definition of benchmarks, including work-flow benchmarks;
– To introduce a middleware-independent definition of benchmarks;
– To serve as a container for associating a definition to the resulting metrics

as well as the collected monitoring data.

Figure 3 provides a high-level schematic view of the GridBench Definition
Language. The benchmark definition includes all necessary information needed
to run a benchmark. It includes a set of parameters, which specify details for
the benchmark execution (such as the path to the executable and benchmark-
specific parameters). It also contains a location which specifies the resources on
which it should run. A benchmark can be hierarchical in nature, meaning that

1 A model definition is a template benchmark definition with default parameters. A
model is used for the creation of a new benchmark definition.



216 G. Tsouloupas and M.D. Dikaiakos

<benchmark name="epwhetstone"
date="20040515023918"
type="mpi" >

<location>
<resource name="cluster.ui.sav.sk"

cpucount="16"
wncount="16"

jobmanager="jobmanager-pbs-workq"/>
</location>
<parameter name="executable" type="value"

dataType="0">epwhetstone</parameter>
<parameter name="execpath" type="value"

dataType="0">/opt/cg/gb/bin</parameter>
<parameter name="stage_executable" type="value"

dataType="0">manual</parameter>
<parameter name="nloops" type="value"

dataType="1">10000</parameter>
</benchmark>

Fig. 4. Left: A schematic overview of GBDL; shown in boxes are the main parts of a
GBDL document. Right: An example GBDL definition

it can be made up of other benchmarks. This, in conjuction with the use of
the execution constraint elements, can be used to specify simple workflows. A
benchmark metric may be in the form of a single value or in the form of a vector
of values (such as bandwidth at different packet-sizes).

2.4 Archiver Web-Service

The Archiver allows the storage and retrieval of results generated by executions
of the GridBench Suite Benchmarks through the Gridbench Framework.

The Archiver was introduced in order to serve the following purposes:

– To manage a potentially large number of results depending on the size of
the Grid under study, the number of benchmarks and the frequency of their
execution.

– To provide a central repository for the results allowing access to measure-
ments for users or Grid services.

– To hold a set of model definitions serving as customizable benchmark defi-
nitions.

Fig. 5. Diagram describing the Archiver functionality



GridBench: A Workbench for Grid Benchmarking 217

The Archiver is an interface implemented as a web service. The Archiver
interface may have several implementations depending on the back-end in use.
There are already implementations for using the Apache Xindice native XML
database as a back-end and the (newer) MySQLArchiver implementation using
the MySQL relational database as a back-end.

2.5 Orchestrator Web-Service

When a new benchmark description (in the form of GBDL) is delivered to the
Orchestrator web service for execution the GBDL is translated to the Job De-
scription Language required by the underlying middleware. All specified moni-
toring data collection is initiated and the job is submitted. When the job finishes,
it’s output (the metrics) are incorporated into the benchmark, as well as all the
collected monitoring data. The final GBDL is then archived using the Archiver
service.

The diagram in figure 6 describes the Orchestrator functionality in a series
of steps. The steps are given below (the numbers correspond to the circled items
in the diagram):

Fig. 6. Diagram describing the Orchestrator functionality

1. The Orchestrator receives a benchmark description in the GridBench De-
scription Language (XML). This will originate from the GridBench GUI or
from an automated system performing automated / periodic executions;

2. The GBDL is passed to the GBDL translator (which is part of the Middle-
ware Plugin) which generates a middleware-specific job description in the
syntax and format required by the underlying middleware;

3. The middleware-specific job description is then returned to the Orchestrator ;
4. The Orchestrator determines all monitoring that need to be performed,

which is specified by the monitor element(s) of the GBDL. Using the type
and query attributes of the monitor, the correct monitoring plugin is invoked.



218 G. Tsouloupas and M.D. Dikaiakos

5. Monitoring data collection is started. (In the event where the banchmark is
put in the target resource’s local queue, synchronization of monitoring data
collection and the actual benchmark execution is performed by job-status
monitoring);

6. The benchmark job is then submitted using the Middleware plugin;

7. The benchmark job’s status is monitored either by an “in-process wait” or
by polling;

8. The benchmark job finishes and the result (i.e. the standard output contain-
ing the metrics) is returned to the Orchestrator by the Middleware Plugin;

9. The Monitoring Plugin is then signaled to stop collecting monitoring data
and the collected data is returned to the Orchestrator ;

10. The results of the benchmark in the form of metric elements, as well as the
monitoring data, are incorporated into the original GBDL. If the resources
specified in the location element were not specified explicitly (i.e. resources
were allocated by the system) then location element is also updated;

11. Finally, the resulting GBDL is passed to the Archiver, concluding the Or-
chestrator ’s role as it relates to this specific benchmark.

2.6 The GridBench User Interface: The “Virtual Workbench”

GridBench provides a user-friendly graphical interface for defining and executing
benchmarks, as well as browsing results. Additionally it provides tools for result
analysis through the easy construction of custom graphs from archives results.
Figure 8 shows the main graphical use interface for the definition of benchmarks.

In Figure 8 we can observe the list of available benchmarks (the list on the
left) and the available resources (the list on the right). The resource list shows
resources retrieved from one or more Grid Information Systems (MDS), with
details about each resource’s composition such as free/busy CPU’s and Worker
nodes, dual/single CPU machines etc. Additionally a set of tests can be per-
formed on each resource. In Figure 8 we can see tests such as the “PBS” test
and the “MPI” tests. These tests will test each resource for correct configu-
ration of PBS and MPI respectively. Tests involving multiple sites (e.g. using
MPICH-G2) can also be performed. Such tests are usefull for detecting configu-
ration problems as well as connectivity/firewall issues. More tests (e.g. targetting
other local queuing systems) can be easily added by implementing simple Java
interfaces.

Defining and executing a benchmark is as easy as dragging a benchmark onto
one of the resources (shown in Figure 8). The user has the opportunity to tune
the benchmark parameters prior to execution via a benchmark configuration
panel. The user can easily construct graphs as the ones in the results section by
using the “result matrix” shown in Figure 7.



GridBench: A Workbench for Grid Benchmarking 219

3 Use-Case Scenarios

We present 2 simple use-case scenarios for GridBench in order to illustrate the
functionality visible to the end-user and the overall simplicity in using the tool to
get performance metrics for Grid resources. First we describe the scenario where
a user would like to get a “picture” of the currest status of a set of resources in
terms of low-level performance metrics. In the second case the user has a specific
application in mind and would like to select a resource onto which to execute
the application. Many other use-case scenarios are possible; in fact some do not
even involve an end-user. For example, metrics obtained through GridBench
mechanisms can be used by a scheduler that performs resource ranking on an
application basis in a way that is completely transparent to the user.

Fig. 7. The GridBench graphical user interface showing the generation of charts from
historical data. The result shown is from a cache benchmark

3.1 Use-Case Scenario 1: Comparing Resources

As a first use-case, we consider a user who wants to compare a set of resources in
terms of 2 “basic” performance factors : CPU FLOP/s and memory bandwidth.
The user would like to use “fresh” data so she opts to invoke new benchmark
executions instead of fetching historical data. The user can perform the following
steps:

1. Determine which metrics will tell you what you want to know about the
resources. In this case, the metrics for these factors can be delivered by a set
of benchmarks as summarized below:

Factor Metric micro-benchmark
CPU OP/s EPWhetstone
Memory bandwidth EPStream



220 G. Tsouloupas and M.D. Dikaiakos

2. Using the GridBench GUI simply drag each of the benchmarks onto each
resource and submit the benchmark (Figure 8). When the benchmark exe-
cution finishes, the result will be automatically archived.

3. Using the GridBench GUI put together comparative charts for the resources
for each benchmark (Figure 9).

From the results on Figure 9 (the charts were generated using the GridBench
GUI) we observe that the three sides that were chosen for comparison vary in

Fig. 8. Screen-shot of the GridBench graphical user interface. The list on the left is a
list of benchmarks that are integrated into GridBench. The list on the right shows the
currently available resources and their status in terms of busy/free CPU’s. Invoking a
benchmark on a resource is as simple as dragging a benchmark from the template list
to a resource in the resource list

(a) Aggregate CPU performance (b) Aggregate memory bandwidth

Fig. 9. Results for use-case scenario 1



GridBench: A Workbench for Grid Benchmarking 221

their measurements. At this point it is important to note that two of the resources
(ce010.fzk.de and gtbcg01.ifca.unican.es) use dual-CPU worker-nodes. In
terms of aggregate CPU performance they vary only sightly. In terms of memory
bandwidth the performance varies greatly as shown in figure 9(b) (probably due
to the memory technology employed at each resource). Considering a memory-
intensive application where the main requirement is memory bandwidth then a
user (or resource broker) can select the four worker nodes from ce010.fzk.de
rather than the four from gtbcg01.ifca.unican.es.

3.2 Use-Case Scenario 2: Application Performance

As a second use-case we consider a user that wants to compare resources based on
performance of a given application or kernel 2. The user, in this case a surgeon,
needs to find the best resources to run a set of simulations. The user has a
given application that is used frequently, it is therefore justifiable to perform
some trivial instrumentation/timings on the application’s computational kernel
(e.g. to measure iteration times or simply measure completion time on a given
dataset) and make it part of the benchmarks available in GridBench.

One of the primary design goals of the GridBench framework is the easy
inclusion of new benchmarks/kernels. In this use-case scenario the user wishes
to include a frequently used kernel; the following steps need to be taken:

1. Create a new GBDL description (model) and add it to the Archiver database;
2. Write a simple implementation of the ParameterHandler Java interface;
3. Instrument the code of the kernel to generate metrics.

A New GBDL Description
The first step in adding a new kernel is to create a new GBDL description such

as the one that follows:
<benchmark name="bstream1_1" date="" type="mpi"

model="true" description="B_stream 1.1 ..." >
<parameter name="executable" type="system">bstream1.1</parameter>
<parameter name="iterations" type="value">40</parameter>
<parameter name="Reynolds" type="value">20</parameter>
<parameter name="data_id" type="value">tube38x40x40</parameter>
<parameter name="stage_file" type="system">tube38x40x40.bs</parameter>
</benchmark>

This description states that:

– this is a benchmark description that is to be used as a model (model=“true”);
– the parameters iterations, Reynolds and data id are application-specific pa-

rameters required by the kernel executable;
– “bstream1.1” is the name of the executable and file “tube38x40x40.bs” needs

to be staged;

2 The kernel in question is from a medical application, developed at the University of
Amsterdam, for pre-operative planning of vascular reconstruction. It involves blood-
flow simulation using a Lattice Boltzmann method in arteries using 3-Dimensional
data obtained from MRI scans of the patient [9].



222 G. Tsouloupas and M.D. Dikaiakos

Since the formatting of command-line arguments to the application exe-
cutable is application-dependent the user needs to provide a ParameterHandler.

Writing a ParameterHandler
A benchmark-specific ParameterHandler is required for special formatting of

command-line arguments (or creation of parameter files etc). In this use-case
scenario the applications takes three parameters, which need to be provided in
a given order on the command-line. A typical invocation would be:

bstream1_1 20 tube38x40x40 40

During translation of the GBDL to the middleware-specific job description,
the class ParameterHandler bstream1 1 will be dynamically loaded:

public class ParameterHandler_bstream1_1 implements ParameterHandler{
public java.util.Vector getCommandLineArguments(Benchmark benchmark){

ParameterCollection parameters=benchmark.getParameters();
Vector parameterVector=new Vector();

Parameter data_id=parameters.getParameter("data_id");
Parameter reynolds=parameters.getParameter("Reynolds");
Parameter iterations=parameters.getParameter("iterations");

parameterVector.add(raynolds.getValue());
parameterVector.add(data_id.getValue());
parameterVector.add(iterations.getValue());

return parameterVector;
}
...

}

The method getCommandLineArguments() is called and returns an ordered
list of parameters correctly formatted and ready to be passed to the application
executable.
Instrumenting Application Codes
Instrumentation of codes is highly application-specific and usually involves triv-

ial modification of the source code to obtain timings at a high level. In our specific
use-case the application performs iterations which are controlled by a main loop.
In total, about ten lines of code were added in order to time each iteration and
output the following metrics onto the standard output:

<metric name="iteration_times" type="vector" unit="s" step="20" period="200">
<vector name="time">0.079617 0.079529 0.079511 0.079498 ... 0.094326</vector>

</metric>
<metric name="completion_time" type="value" unit="s">639.633215</metric>

Obtaining Measurements
Once the kernel has been integrated into GridBench the user can invoke it

just like any other benchmark. The same steps listed in the previous use-case
apply to this case as well. One difference is that now the kernel benchmark takes
considerably longer to run (tens of minutes) than the micro-benchmarks (a few
seconds) in the previous use-case. In this case the user opts to use previously
archived executions of the kernel benchmark because it is considerably expensive
to get fresh measurements. The steps are now:



GridBench: A Workbench for Grid Benchmarking 223

Fig. 10. Results for use-case 2, showing iteration times of a given kernel on four
resources

1. Retrieve archived results for this kernel;
2. Benchmark the resources for which there are no archived results;
3. Compare the results.

Invoking the kernel benchmark on a set of resources allows us to construct
the chart shown in Figure 10. Based on these results a user (or resource broker)
can make relatively safe decisions for resource selection, given that the criterion
for a “good” selection is the performance of the given kernel.

4 Related Work

The ALU-Intensive Grid Benchmarks [3] are a specification to run the the
NAS Parallel Benchmarks [1] in pre-defined workflows and from that infer the
performance of Grid systems. The AIGB aim to benchmark the ability of dy-
namic collections of Grid resources to executes several types of workflow, while
the GridBench suite proposed an more hierarchical approach both in terms
of infrastructure and of benchmark types. Nevertheless, the GridBench tool
could serve as a means to execute these benchmarks just like any other
benchmark.

Diperf [4] is a distributed performance-testing framework aimed at automat-
ing performance evaluation of services. It does not address computational re-
sources or network performance directly.

Also, work has been done to “assess” the Grid using “probes” [2] but this
work focuses mainly on file transfers, remote execution, and Information Service
responses. Computational resource performance is not addressed.

5 Conclusions and Future Work

We have provided an overview the GridBench services and user interface which
can serve as a “virtual workbench” for performing benchmarking experiments,
archiving benchmark specifications and results and an aid for analysis of metrics.



224 G. Tsouloupas and M.D. Dikaiakos

We have presented two elementary use-case scenarios and illustrated the ease
of use of the tool: The first use-case illustrated how end-users and administrators
can perform benchmarking experiments either for resource selection of for deter-
mining the operational status of resources. The second use-case illustrated how
a user or application developer can obtain results from new application-based
benchmarks using the GridBench framework.

In on-going and future work we are working on the implementation of more
benchmarks focusing on the aspects of availability and performability and the
derivation of higher-level metrics to express “quality features” of Grid infras-
tructures: Homogeneity, trustworthiness of GIS, health of the infrastructure,
reliability and robustness. We also plan to enrich the Gridbench suite with more
benchmarks based on existing Grid applications.

We plan to extend the GBDL specification to include constrained and au-
tomatic parameter selection and to include additional middleware plugins to
provide interoperability with more infrastructures (such as UNICORE).

Acknowledgments

This work was supported by the European Union through the CrossGrid project
(IST-2001-32243). The authors wish to acknowledge Alfredo Tirado-Ramos and
Lilit Abrahamyan (University of Amsterdam) for the blood flow application
code, and the support of the CrossGrid testbed team for running the distributed
simulation.

References

1. David Bailey, Tim Harris, William Saphir, Rob van der Wijngaart, Alex Woo, and
Maurice Yarrow. The nas parallel benchmarks 2.0. The International Journal of
Supercomputer Applications, 1995.

2. Greg Chun, Holly Dail, Henri Casanova, and Allan Snavely. Benchmark probes for
grid assessment. In 18th International Parallel and Distributed Processing Sympo-
sium (IPDPS 2004), CD-ROM / Abstracts Proceedings, 26-30 April 2004, Santa
Fe, New Mexico, USA. IEEE Computer Society, 2004.

3. R.F Van der Wijngaart and Michael Frumkin. Alu intensive grid benchmarks.
https://forge.gridforum.org/projects/gb-rgs, 2004.

4. Catalin Dumitrescu, Ioan Raicu, Matei Ripeanu, and Ian Foster. Diperf: an au-
tomated distributed performance testing framework. In Proceedings of the 5th
International Workshop on Grid Computing (GRID2004). IEEE, November 2004.

5. S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, and S. Tuecke.
A Directory Service for Configuring High-Performance Distributed Computations.
In Proceedings of the 6th IEEE Symp. on High-Performance Distributed Comput-
ing, pages 365–375. IEEE Computer Society, 1997.

6. The EU CrossGrid Project. http://www.eu-crossgrid.org.

7. The EU DataGrid Project. http://www.eu-datagrid.org.

8. The LCG Project. http://lcg.web.cern.ch/LCG/.



GridBench: A Workbench for Grid Benchmarking 225

9. P.M.A. Sloot, A. Tirado-Ramos, A.G. Hoekstra, and M. Bubak. An interactive
grid environment for non-invasive vascular reconstruction. In 2nd International
Workshop on Biomedical Computations on the Grid (BioGrid’04), in conjunction
with Fourth IEEE/ACM International Symposium on Cluster Computing and the
Grid (CCGrid2004), Chicago, Illinois, USA, April 2004. IEEE. CD-ROM IEEE
Catalog # 04EX836C.

10. George Tsouloupas and Marios D. Dikaiakos. Gridbench: A tool for benchmark-
ing grids. In Proceedings of the 4th International Workshop on Grid Computing
(GRID2003), pages 60–67, Phoenix, AZ, November 2003. IEEE.

11. George Tsouloupas and Marios D. Dikaiakos. Characterization of computational
grid resources using low-level benchmarks. Technical Report TR-2004-5, Dept. of
Computer Science, University of Cyprus, 2004.


	Introduction
	GridBench
	The GridBench Back-End
	Overview
	The GridBench De¯nition Language
	Archiver Web-Service
	Orchestrator Web-Service
	The GridBench User Interface: The \Virtual Workbench"

	Use-Case Scenarios
	Use-Case Scenario 1: Comparing Resources
	Use-Case Scenario 2: Application Performance

	Related Work
	Conclusions and Future Work
	Acknowledgments
	References



