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Foreword 

While Grids have initially emerged from the need to get access to more 
computing power by combining several high-performance computers, it has 
been quickly evident that there is a similar need to get access to data, such 
as databases, file systems, and digital libraries which are widely spread in the 
Internet. By accessing these distributed data and processing them using Grid 
computing resources to produce knowledge, we can expect to extend the scope 
of Grid Technologies to new applications. In fact, research activities in this 
area are being pursued by several research teams and, at the same time, big 
companies are very active in the area. 

The huge amount of dispersed data and information repositories have arisen 
new challenges in the field of Grid computing. Grids are evolving towards 
flexible and knowledge-based infrastructures, in which services will be dy- 
namically composed, allowing applications to access heterogeneous resources 
to be exploited in complex distributed applications. The field of Grid com- 
puting can take advantage of related paradigms, such as Workflows, Services, 
and Ontologies in order to provide an infrastructure with mentioned features. 
This new approach can be referred as the Knowledge and Data Management in 
Grids, and it must address issues related to data services composition, knowl- 
edge discovery, data and knowledge integration to provide the ability for ex- 
tracting useful knowledge from unmanageable volume of data, by exploiting 
storage management, database and data mining techniques in a Grid context. 

The strategic importance of Data and Knowledge Management in the con- 
text of Grid Technologies, have led CoreGRID, the only one Network of Excel- 
lence in Grid and P2P technologies funded by EU 6th Framework Programme, 
to have a dedicated institute to investigate research issues in this area. This 
book is the result of the efforts carried out by researchers involved in this 
CoreGRID Institute during the first year. While the CoreGRID ambition is 
to foster integration and collaboration, the first year was mainly to let Core- 
GRID researchers to know one each other. Several meetings and workshops 
were organized to give the opportunity to researchers to exchanged and con- 
front their ideas. This was the goal of the first Workshop on Knowledge and 
Data Management in Grids that has been held in Poznan (Poland) on Septem- 
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ber 13-14, 2005. 1 would like to take this opportunity to express my gratitude 
to the organizers of this workshop as well as to all contributors. 

Thierry Priol, CoreGRID Scientific Co-ordinator 



Preface 

Data and knowledge play a key role in current and future Grid applications 
and services. The issues concerning representation, querying, discovery, and 
integration of data and knowledge in dynamic distributed environments can 
be addressed by exploiting features offered by Grid Technologies. Current 
research activities are leveraging the Grid for the provision of generic- and 
domain-specific solutions and services for data management and knowledge 
discovery. The goal is to promote a wide diffusion and use of knowledge-based 
Grid services for the Semantic Grid and the Knowledge Grid. To this end, re- 
searchers are focusing on problems related to (i) providing commodity-based 
distributed frameworks for storing, accessing, and handling data, (ii) develop- 
ing semantic-based techniques and tools for supporting data intensive applica- 
tions, and (iii) designing distributed data analysis techniques and services for 
information and knowledge extraction on Grids. 

The CoreGRID Network of Excellence aims at strengthening and advanc- 
ing scientific and technological excellence in the area of Grid and Peer-to-Peer 
technologies. To achieve its objectives, CoreGRID brings together a critical 
mass of well-established researchers from more than forty European institu- 
tions active in the fields of distributed systems and middleware, models, algo- 
rithms, tools and environments. 

In the CoreGRID NoE, the Institute on Knowledge and Data Management 
(KDM) has the objective to improve integration of research activities in the 
fields of data management, knowledge discovery and Grid computing for pro- 
viding knowledge-based Grid services for the Semantic Grid through a tight 
coordination of European researchers active in those areas. The research tasks 
undertaken in the context of the KDM Institute compose a unified scenario of 
the data and knowledge management in GRIDS through a layered approach that 
starts from efficient data storage techniques up to information management and 
knowledge representation and discovery. At the same time, joint research ac- 
tivities pursued by the Institute partners are providing single solutions for data 
and knowledge management that will bring benefits to research and industry in 
GRID technology. Within its activities. the KDM Institute organized the first 
Workshop on Knowledge and Data Management in Grids that has been held in 
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Poznan (Poland) on September 13-14,2005. The purpose of the workshop was 
bringing together CoreGRID researchers and invited external scientists doing 
research in Knowledge and Data Management in Grid and Peer-to-Peer Sys- 
tems. The workshop provided a forum for the presentation and exchange of 
views on the latest Grid Technology research in the area of knowledge and 
data management. 

This book is the third volume of the CoreGRID series and, as a result of 
that workshop and some additional invited papers, it brings together scien- 
tific contributions by researchers and scientists working on storage, data, and 
knowledge management in Grid and Peer-to-Peer systems. The book chapters 
present the latest Grid solutions and research results in key areas of knowledge 
and data management such as distributed storage management, Grid databases, 
Semantic Grid and Grid-aware data mining. All the addressed topics are dis- 
cussed in the context of recent research projects. 

The book includes four parts: Grid Data Management, Grid Data Storage, 
Semantic Grid, and Distributed Data Mining. All those sections are concerned 
with key topics in the area of knowledge and data management on Grids. 
They provide a general view of the main challenges in implementing data- 
and knowledge-intensive applications in a Grid computing scenario. 

The first part includes four chapters. The first one presents an overview of 
the OGSA-DAI (Open Grid Service Architecture - Data Access and Integra- 
tion) software, which provides a uniform and extensible framework for access- 
ing structured and semi-structured data and provide some examples of its use 
in significant Grid projects. The second chapter discusses data integration and 
query reformulation in service-based Grids. The XMAP data integration algo- 
rithm is presented and service-based architecture for data integration-enabled 
query processing on the Grid is discussed. In the third chapter are evaluated the 
benefits of using OGSA-DAI in bioinformatics GRIDS by establishing commu- 
nication between OGSA-DAI and GRID project developers as well as through 
practical case studies involving current projects. The last chapter of this part 
discusses fault-tolerance in Grid-based distributed query processing. A new 
scheme for adding fault-tolerance to distributed query processing through a 
rollback-recovery mechanism is evaluated in the context of the OGSA-DQP 
system. 

The Grid Data Storage part includes a chapter on Conductor, a rule-based 
production system providing the ability to configure storage systems to meet 
resource constraints and application requirements. Conductor is able to eval- 
uate alternatives and minimize system costs based on certain criteria. Then 
an autonomous distributed system built on top of the Violin framework is pre- 
sented that is able to configure and reconfigure the storage hierarchy by detect- 
ing service breaches and take actions to eliminate them. The third chapter of 
this part presents the Clusterix Data Management System (CDMS), a solution 
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for data management on Grids. Taking into account Grid specific network- 
ing conditions - different bandwidth, current load and network technologies 
between geographically distant sites, CDMS tries to optimize data throughput 
via replication and replica selection techniques. 

The third part includes five chapters discussing key topics in the Semantic 
Grid area. The first chapter describes the dynamic aspects of the Semantic 
Grid reference architecture, S-OGSA, by presenting the typical patterns of in- 
teraction among these services. The next chapter describes a science metadata 
model developed at CCLRC providing interoperability of scientific informa- 
tion systems in the organization and form a specification of the type and cate- 
gories of metadata that studies should capture about their investigations. Then 
the Semantic Grid part includes a chapter that argues that providing the appro- 
priate means for accessing and using ontologies effectively is a key factor in 
enriching current Grid with semantic technologies and supporting progress to- 
wards the next generation Grid. That work was performed in the OntoGrid 
project. The fourth chapter in this part proposes an ontology-based meta- 
scheduler as a Grid service for co-allocating resources on multiple grid nodes 
based on semantic information. Finally, the part finishes with a chapter that 
presents the implementation of Atlas, a P2P system for the distributed storage 
and querying of RDF(S) metadata describing OntoGrid resources and services. 

The last part of the book includes contributions on Distributed Data mining 
in Grids. The first chapter describes the composition of distributed knowl- 
edge discovery services according to the WSRF model by using the Knowl- 
edge Grid environment. The chapter focuses in particular on the application 
modeling. Applications are designed using a UML model, which is translated 
into a BPEL representation, in turn processed by the Knowledge Grid services 
for its execution. The second chapter addresses the problem of mining fre- 
quent closed itemsets in a highly distributed setting like a Grid. Authors show 
how frequent closed itemsets, mined independently at each site, can be merged 
in order to derive globally frequent closed itemsets. The last chapter reports 
progress made by using data mining techniques in the TELEMAC project con- 
cerned with enhancing the efficacy of anaerobic digestion in potentially unsta- 
ble digesters. After placing the specific TELEMAC situation in a generic Grids 
context, authors present a classification approach to attributes for metadata and 
indicate some examples of model resource discovery. 

From recent developments we can see the Grid moving from a computa- 
tion platform to a data and knowledge management infrastructure. This trend 
needs new models, tools and solutions for enabling Grid computing to support 
advanced Grid applications. This book discusses some of the key technolo- 
gies needed to support this trend and presents solutions recently designed to 
implement scalable applications. 
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Abstract 
The grid provides a vision in which resources, including storage and data, 

can be shared across organisational boundaries. The original emphasis of grid 
computing lay in the sharing of computational resources but technological and 
scientific advances have led to an ongoing data explosion in many fields. How- 
ever, data is stored in many different storage systems and data formats, with 
different schema, access rights, metadata attributes, and ontologies all of which 
are obstacles to the access, integration and management of this information. 

In this chapter we examine some of the ways in which these differences can 
be addressed by grid technology to enable the meaningful sharing of data. In 
particular, we present an overview of the OGSA-DAI (Open Grid Service Ar- 
chitecture - Data Access and Integration) software, which provides a uniform, 
extensible framework for accessing structured and semi-structured data and pro- 
vide some examples of its use in other projects. The open-source OGSA-DAI 
software is freely available from http://www.ogsadai.org.uk. 

Keywords: OGSA-DAI, databases, data access, data management 
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1. Introduction 
The grid provides a vision [I, 71 in which resources, such as high perfor- 

mance computers, people and, for the purposes of this chapter, storage and 
data, can be shared across organisational boundaries. Each individual organi- 
sation contributes resources to this Virtual Organisation (VO) 121, a dynamic 
collection of individuals and institutions sharing resources in a flexible, secure 
and coordinated manner, while still maintaining ownership and control of its 
own resources. There are clear benefits to a VO's members in allowing re- 
sources to be shared, as well as many technological and political obstacles to 
overcome. To facilitate the process a number of organisations are develop- 
ing middleware: software that allows the VO federation to be realised through 
the use of grids. Notable amongst these are: Globus, UNICORE and the UK 
OMII, as well as others [4]. By itself, the base middleware provided is usu- 
ally insufficient to construct a fully functional VO - it requires configuration 
and customisation to achieve full operational status. We, as grid technology 
providers, are still some way from being able to produce an out of the box grid 
but nevertheless grid toolkits amortise the development costs and ensure a level 
of inter-operability between distinct grids, allowing dynamic and hierarchical 
VOs to be composed. 

The original emphasis in grids lay in the sharing of computational resources. 
Technological and scientific advances have led to an ongoing data explosion 
in many fields [5-71 and there are clear benefits to being able to share and 
combine data from different sources [8-91. With the decreasing cost of storage, 
more data is being maintained online and thus readily available. However, data 
is stored in many different storage systems and data formats, with different 
schema, access rights, metadata attributes, and ontologies. The volumes of 
data concerned could vary from small to very large, stored in one system or 
across many. All these differences can produce significant obstacles in a grid. 
Not all are immediately tractable and trying to solve the general problem is 
hard; nevertheless some of these obstacles may be overcome or reduced by 
middleware specifically targeted at addressing data management issues. These 
products (of which OGSA-DAI is an example) provide an infrastructure which, 
in particular contexts, allows the meaningful sharing of data to take place. 

The Open Grid Services Architecture - Data Access and Integration 
(OGSA-DAI) software is intended to make the process of combining data from 
multiple, distributed, heterogenous and autonomously managed data sources 
easier to establish, maintain and operate by providing middleware that delivers 
many commonly required functions in a form that is easily used. It focuses 
on cases where the assembly of all the data into a single data warehouse is in- 
appropriate. Instead, it enables application developers to build virtual data 
resources that draw on up-to-date data from an identified set of other data 
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resources. IJsers can then explore these combined virtual data resources by 
requesting the enactment of compositions of OGSA-DAI activities, often via 
application-specific higher-level tools. 

The remainder of this chapter discusses how data access can be managed 
in grids, focusing in particular on the perspective taken by the current ver- 
sion of OGSA-DAI. The next section discusses why web services are being 
used by some of the middleware products to build grids, section 3 examines 
some of the data middleware architectural requirements arising from grids, 
and sections 4 and 5 provide an overview of OGSA-DAI. Section 6 briefly re- 
views how OGSA-DAI is being used in a selection of projects and section 6 
considers other currently available middleware products that cater for data in 
grids. Finally, before concluding, section 8 examines how OGSA-DAI con- 
siders standards as a means of ensuring interoperability between different grid 
middlewares. 

2. Web Services and Grids 
A large number of different types of resources could be contributed by a 

member organisation to a VO. Grid middleware needs to be able to accom- 
modate these and abstract away some of the inherent differences to facilitate 
shared access and use. Web Services (WS) [lo], originating in the business-to- 
business world, offered a number of transparencies: platform independence, 
programming language neutrality, clearly defined interfaces and transport 
neutrality that could be used to construct grids. 

However, a number of important perceived grid requirements such as: the 
provision of service state with a standard access interface, lifecycle manage- 
ment to ensure services are cleaned up, service groups to facilitate the aggrega- 
tion and discovery of services and inheritance to facilitate the development of 
complex grid services [7] were not provided by web services. The Open Grid 
Services Infrastructure (OGSI) [8] specification attempted to add this missing 
functionality, but its implemention threatened a schism in the base technology 
used by grid and web services. This undesirable outcome was avoided by dep- 
recating the OGSI specification and developing a new set of specifications, the 
Web Services Resource Framework (WSRF) [12-161, motivated by OGSI and 
providing the same functionality in a manner consistent with web services. The 
consequence of this forced and rapid change between OGSI, on which a lot of 
the grid infrastructure being developed was based, and WSRF led to a reticence 
by some in the grid community to adopt emerging standards until they had wide 
acceptance and adoption within the community [17]. For this reason, some 
products, like OGSA-DAI, have had to support more than one infrastructure, to 
allow information to be shared across grid implementations. At present OGSA- 
DAI provides support for the Globus Toolkit 4 (www.globus.org), OM11 2 
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(www.omii.ac.uk) and Axis 1.2 (xml.apache.org/axis); versions have also been 
adapted to run on the GRIA (www.gria.org) and UNICORE (www.unicore.org) 
platforms' . 

Currently, web services are regarded as a suitable means to construct grids 
and, importantly, the abstractions offered are useful to satisfy the requirements 
for data sharing [18-191, in particular lowering the barriers created by the het- 
erogeneity of different data sources. OGSA-DAI has subscribed to the use 
of web services for grids and provides its functionality through web services. 
However, web services do not offer a perfect solution: for instance SOAP is 
not a a good mechanism for transporting large amounts of data and there are 
associated overheads with the processing of XML. We must assume that many 
of the current web service limitations will be overcome in the future. 

3. Architectural Requirements for Data Middleware 

The previous section examined the suitability of web services to build grid 
infrastructure. In this section we examine some of the architectural require- 
ments that arise from the provision of middleware for grids in general and in 
particular to address data requirements of grids. 

The fundamental requirement is to provide a middleware layer, between data 
resources and their clients, that provides some level of uniformity in terms of 
virtualisation, access, federation and data integration. This can be expressed 
through a number of goals for these data services: 

it must be easy for users to combine data from multiple sources in ways 
that suit their particular analysis by assisting: 

- application developers building services for a target community of 
users 

- data integration users through provision of higher-level tools that 
compose sets of data services 

rn it must provide a uniform access layer that allows data services to be 
composed including: 

- a common set of access mechanisms covering all the types of data 
source and their metadata 

- a set of operations providing all of the elemental data selections, 
transformations, combinations and partitions 

- a set of data movement capabilities suitable for all destinations and 
data sizes 

'Further porting work will be carried out as part of the EU FP6 OMII-Europe project 
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- an abstraction to allow different security models to be bridged 

it must minimise data transfer and copying by allowing: 

- composition and enactment of multiple operations on a service 

- transfer of computation closer to the data source 

- efficient, streaming, data transfer both internally and between ser- 
vices 

The OGSA-DAI software has aimed to meet these goals by providing: 

An extensible framework - which allows new operations, data resources 
and security models to be exposed. 

Perform Documents - which allow multiple operations to take place in a 
single web service interaction. 

Activity Framework- which provides a powerful mechanism to combine 
activities within sessions, allowing one to specify control and data flows 
while creating pipelines to process data in streams. 

Interoperability with other grid infrastructure - by working closely with 
other grid middleware providers, to ensure that OGSA-DAI services will 
interoperate with their software. 

Application development support - OGSA-DAI has provided a client 
toolkit that makes it easier to develop OGSA-DAI applications and hides 
the differences in the message infrastructures supported by OGSA-DAI. 

Most of the grid middleware development that is taking place is not aimed 
directly at end-users but rather at other developers. This second tier of de- 
velopers can customise the middleware functionality for the needs of their 
own particular communities, hence the importance of a flexible and extensi- 
ble framework. 

4. An Overview of OGSA-DAI 
OGSA-DAI has adopted a service oriented architecture (SOA) solution for 

integrating data and grids through the use of WS. This section presents an 
overview of OGSA-DAI features as present in the 2.1 WSRF and WSI releases 
of OGSA-DAI. A high-level view of the basic OGSA-DAI components and 
their interactions is shown in Figure 1. 

The base unit of functionality within OGSA-DAI is the activity. Activities 
expose one or more capabilities of an underlying data resource, for instance the 
ability to execute an SQL query on a relational database, or they add function- 
ality at the service layer: transforming data as it comes out of the data resource 
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Third-Parly 

I Resource I 

Figure I .  An overview of OGSA-DAI components 

while still at the service or delivering data to a third party using a non-SOAP 
based protocol. Aperform document collects a number of these activities, rep- 
resented as XML fragments in an XML document, chained together using a set 
of named inputs and outputs that describes the data flow through the activities. 
The data is operated on by each activity as the data flows through it. The details 
of perform documents and activities are discussed in more detail in section 5. 

An OGSA-DAI interaction thus begins with a client sending a perform doc- 
ument to an OGSA-DAI Data Sewice (DS). The DS can expose zero or more 
Data Sewice Resources (DSR). A DSR presents a high-level abstraction of a 
Data Resource (DR), a WS-Resource in WSRF terms, and contains the OGSA- 
DAI infrastructure necessary to interact with the DR. For instance, the DSR 
knows about the activities it can execute. In the case where no data resources 
are bound to the service only translation and delivery capabilities are sup- 
ported. In the case where more than one DSR is associated with a DS then 
more capabilities are supported but the client must be able to specify which 
DSR a perform document is targeting. As OGSA-DAI supports more than one 
messaging framework the way that this is done varies: for the WSRF case 
the endpoint reference of the DSR targeted is specified in the SOAP header 
using mechanisms specified in WS-Addressing [20]; for the non-WSRF case, 
referred to as the WSI flavour of OGSA-DAI, the DSR name, which is deter- 
mined when a DSR is instantiated, is appended to the service URL. Once the 
message has passed through the DS and the perform document has been ex- 
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tracted the behaviour of OGSA-DAI is identical regardless of the messaging 
framework used. 

The bulk of the processing in OGSA-DAI takes place at the Data Sentice Re- 
source (DSR). The DSR accepts a perform document from the DS and passes 
it to its OGSA-DAI Engine (ODE). The ODE is responsible for processing per- 
form documents and generating response documents. It checks the syntax of 
the perform document, instantiates and starts the activities required and coor- 
dinates the data flow between them. If an activity needs to access a resource it 
does so through the Data Resource Accessor (DRA). This provides an activity 
with the appropriate connection type to communicate with the underlying data 
resource. The DRA consists of an interface that, when implemented, provides 
the functionality required for any activity to be able to interact with the partic- 
ular type of data resource it is trying to access, e.g. for an XML database 
it might return an XMLDB connection. This abstraction facilitates the in- 
clusion of new types of data resource to operate within the existing OGSA- 
DAI framework. Currently, OGSA-DAI supports DRAs for: DB2, Oracle DB, 
SQLServer, MySQL, PostgreSQL, HSQLDB, exist, file systems and indexed 
files. 

The security mechanism provided is also extensible. In order for the DRA 
to provide access to the underlying data resource, the grid credentials used to 
access the service need be mapped to a suitable usernamelpassword with which 
to access the data resource. This is done by the Role Mapper which maps the 
distinguished name obtained from the grid credentials to suitable credentials 
to access the underlying data resource. This functionality has been separated 
from the DRA in order to allow third parties to replace the role mapper func- 
tionality with their own version [21-221. For this reason, the role mapper 
provided in the OGSA-DAI distribution is intentionally basic and not intended 
to be used in a production environment. The current authorisation granular- 
ity employed by OGSA-DAI relies on that provided by the existing underly- 
ing security infrastructure and associated policies. Support for a finer level 
of authorisation at the activity level will be provided within future versions of 
OGSA-DAI. These interfaces would provide another extensibility point that 
could use external authorisation services such as PERMIS [23]. 

Assuming that all activities successhlly run to completion, the results from 
the activities are aggregated into a response document by the ODE which is 
then sent back to the original client. This will contain any data produced, un- 
less a delivery activity has been explicitly used in which case the data will be 
transferred separately (note that data may also be pulled into the service using 
a delivery activity, rather than just extracted from a DR). The original requester 
will still get a response document with the completion status of all the activi- 
ties present in their perform document. In the case where not all the activities 
complete successfully, the client will be informed about the completion status 
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of each activity including those that failed. Currently no transactional capabil- 
ities are supported by OGSA-DAI so such an outcome would mean that some 
modifications will have been done and others will not. However, the final sta- 
tus should be clear from the response document. Transactional capabilities 
will be supported in future OGSA-DAI releases, including roll back mecha- 
nisms and distributed transactional capabilities. Early prototyping work has 
shown the viability of wrapping the transactional capabilities of an underlying 
resource and running a set of activities atomically and identified the appropri- 
ate interfaces that could be implemented for resources that not provide their 
own transactional functionality. 

This completes the description of a simple interaction with an OGSA-DAI 
service. In addition, a perform request can create a session in order for its ac- 
tivities to store state within a named context. A follow-on perform document 
can then re-join a session to access any previously stored state. This avoids 
having to pass a context through in the request-response messages and allows 
intermediate state to be stored at the service. Sessions facilitate the external 
decision-making process to take place. For example, storing intermediate re- 
sults in a session allows a client to decide how the process should continue 
in a follow-on request: results could be delivered or collected at a later time 
depending on their size. In addition, sessions will help in the provision of 
transactional behaviour, and provide a naming scheme for status monitoring, 
logging and diagnostics. 

Finally, in order to help support the development of OGSA-DAI applica- 
tions a Client Toolkit (CTk) has been developed that provides an Application 
Programmer's Interface (API) that facilitates the programmatic construction 
of perform documents and interaction with OGSA-DAI services. The CTk 
also abstracts away the differences between the WSRFtWSI messaging frame- 
works supported by OGSA-DAI - the same API can be used for flavours of 
OGSA-DAI running on different underlying platforms. 

5. Activities and Perform Documents 
Activities constitute the logical unit of work within OGSA-DAI. They are 

defined by an XML Schema fragment that dictates the syntax of its XML repre- 
sentation in perform documents, a service side Java implementation that imple- 
ments the functionality at the service and a CTk representation that allows the 
activity to be used by the client toolkit. Activities can provide any kind of func- 
tionality, but typically they fall into one of the three broad categories: statement 
activities interact with a data resource; transformation activities transform the 
data while it is still at the service; and delivery activities deliver, or collect, data 
totfrom third parties (which could include the original client). A comprehen- 
sive set of activities are provided with each OGSA-DAI distribution covering 
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general functionality including SQL and XPath queries, XSLT transformations 
and delivery via GridFTP, FTP and SOAP, as well of examples of some sta- 
tistical (projections) and data integration (SQLBag) operations - consult the 
documentation for more details. However, it is unlikely that all the required 
functionality for a particular application will be there. Thus, OGSA-DAI has 
been designed to allow new activities to be easily added, or existing function- 
ality customised, to operate within the same OGSA-DAI framework. 

As we have seen a perform document collects together activities so that 
these can be sent to a DS in a single request, reducing the number of interac- 
tions required between client and DS to achieve a desired outcome. Figure 2 - 

schematically shows two perform documents being executed at the service. 

Perform Documenl 

Translation 
Merge 
Acllviy 

Figure 2. An example of two perform documents; (a) a perform document containing two re- 
quests, and (b) a perform document that contains parallel execution and multiple inputs/outputs 
to activities 

In case (a) the perform document contains two independent sets of requests 
(activity pipelines) which, by default, will be executed in parallel. For each 
activity its name, parameters, inputs and outputs are defined. The data flow 
between activities can be set up by chaining them together; the output of the 
first becomes the input of the second and so on. This creates a pipeline between 
activities where data is streamed between them. 

It is possible express the control flow that takes place between activities in 
a perform document more explicitly. In the previous case the control flow was 
implicitly sequential as the inputs of activities down the pipeline depend on the 
output of earlier activities (though the order of the execution of the pipelines 
cannot be determined). However, if activities are not explicitly linked it is 
possible to guararitee sequential processing. In some instances, you may also 
want to declare that a set of activities should be run in parallel. For exam- 
ple, in case (b) in Figure 2 we can see that two queries and the subsequent 
transformations are executed in parallel up to the synchronised point at the 
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Transformation-Merge activity. The example also demonstrates that activities 
can have multiple inputs and outputs. 

A taxonomy for activities will be published by the OGSA-DAI team in the 
near future which will help with the composition and semantics of activities. 
The perform document represents a powerful and efficient way for managing 
data access and integration within grids. We aim to extend perform documents 
to be able to target multiple data resources within the same document, along 
with new generic data integration and transform activities. Finally support for 
distributed transactions will enable multi-resource perform documents to run 
atomically. This should facilitate several types of simple data integration use 
cases and provide users with a powerful set of tools for data integration. 

6. How OGSA-DAI is being Used 
OGSA-DAI has been used by a number of projects as a means of providing 

them with uniform data access to data resources. Only a very brief overview of 
some projects is given here, a more complete list with more projects is available 
from www.ogsadai.org.uWabout/projects.php. 

OGSA-DQP (www.ogsadai.org.uWdqp) [24] a sister project to OGSA-DAI, 
provides distributed query processing across read-only data resources using 
OGSA-DAI to provide access to these. OGSA-DQP provides an additional set 
of services over and above the OGSA-DAI ones: a coordinator that coordi- 
nates the various services involved in a distributed query and a set of evalua- 
tors that accept query partitions and evaluate them. OGSA-DQP provide data 
integration capabilities using OGSA-DAI. 

The e-Diamond project (www.ediamond.ox.ac.uk) [25] was a pilot project 
within the UK to pool and distribute information on breast cancer treatement 
allowing specialists to review mammographs produced at different institutions. 
OGSA-DAI was used to provide access to the databases where the images were 
stored, and was extended to include a wrapper for IBM Content Manager. 

The STORM project (storm.bmi.ohio-state.edu) [26] provides a framework 
designed to support processing of large datasets in a distributed environment. 
STORM allows SQL-type queries on file-based datasets by providing data 
model abstractions, e.g. object-relational. To leverage the existing framework 
in grids, STORM uses OGSA-DAI. The latter regards STORM as a data re- 
source and provides the standard grid interfaces to it. Moreover, OGSA-DQP 
can now be used on top to provide distributed query processing over the large 
datasets (virtualised via STORM). 

The ConvertGrid project (pascal.mvc.mcc.ac.uk:9080/convert/) produced a 
demonstrator which showed how grid technologies could automate complex 
social science workflows and facilitate the integrated use of multiple geo- 
referenced datasets. It used OGSA-DAI to access a subset of UK census 
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and neighbourhood statistics data and allows relationships between data to be 
graphically represented based on postcode. 

The LEAD project (1ead.ou.edu) 1271 is a large US initiative to improve the 
forecasting of medium scale weather phenomena such as tornados. OGSA- 
DAI was used in the LEAD project to provide a metadata catalogue, myLEAD, 
which aims to provide a personal workspace for users faced with enormous 
amount of information. In this case, LEAD extended OGSA-DAI to allow the 
use of streaming data. 

7. Related Work 

Data access and integration is a large domain which features a variety of 
software and techniques which address at least some of the issues raised in 
earlier sections. However, there are relatively few products which aim to pro- 
vide general solutions, in particular for grids. Here we restrict our discussion 
to middleware that provides some form of abstracted access to data. 

Storage Resource Broker (SRB): (http://www.sdsc.edu/srb/) is produced by 
San Diego Supercomputer Center (SDSC). An SRB server provides a way of 
accessing collections, a logical name given to a set of data objects, based on 
their attributes andlor logical names rather than their physical names andlor 
locations. SRB supported data objects are file and archival systems, BLOBS 
in DBMSs, database objects that can be queried using SQL and tape library 
systems. In addition SRB servers may be combined to form a federation using 
zoneSRB. 

SRB is mainly file orientated and uses its own protocols. By default it is 
not WS enabled. OGSA-DAI is mainly database orientated and can only be 
accessed through WS mechanisms. In both cases there is some cross over 
where SRB can support databases and OGSA-DAI has some support for files. 
Indeed the two architectures do not prevent OGSA-DAI being used to access 
SRB servers or for OGSA-DAI resources to be exposed through SRB. 

WebSphere Information Integrator (WSII): (www.ibm.corn/software/data/ 
integration/) from IBM provides a number of desirable capabilities to deal with 
data in a VO. These include: search operation across the organisational do- 
mains, data federation, data replication, data transformation and data event 
publishing. The data federation can allow multiple data sources to be queried 
and accessed through a single access point. For a comparison between earlier 
versions of this product and OGSA-DAI see [28]. 

The abstraction capabilities provided by OGSA-DAI have been exploited 
through the provision of a grid wrapper that uses OGSA-DAI to wrap data 
resources that WebSphere Information Integrator can then access [29-301 al- 
lowing more data resources to be associated with this product. 



14 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS 

Virtual Data System (VDS): (vds.uchicago.edu) developed within the Gri- 
PhyN project and work with the Virtual Data Toolkit (vdt.cs.wisc.ed). This 
allows a Directed Acyclic Graph (DAG) to express a workflow, similar to the 
OGSA-DAI perform document but wider in scope, that allows a data recipe to 
be specified to generate derived data from a number sources with a number of 
transformations acting on the source data. The workflow is then stored as the 
provenance for the data that has been generated. 

Mobius: (projectmobius.osu.edu) aims to create a set of tools and services 
to provide data as well as metadata sharing and management in a grid andlor 
a distributed computing environment. To expose a resource in Mobius it must 
be described in an XML schema which will be shared via the Global Model 
Exchange (GME) and then later accessed by querying that schema using for 
example XPath. OGSA-DAI does not require an XML schema to be cre- 
ated for a resource, rather it directly exposes that information (data and meta- 
datalschema) to be queried by the resource's querying mechanisms. 

There are a number of other products that attempt to provide access to data 
in the context of grids, including ELDAS (www.edikt.org/eldas/) and Spitfire 
(edg-wp2.web.cern.ch/edg-wpYspitfire/) but it is not clear whether these are 
currently being actively developed at the moment. 

8. Importance of Standards 
In order to provide some cohesion to the disparate efforts that are going on to 

produce components to construct grids at the moment it is important to ensure 
that these inter-operate at some level. For this reason standards are important. 
Bodies such as the Global Grid Forum (www.ggf.org), OASIS (www.oasis- 
open.org), W3C (www.w3c.org) and the IETF (www.ietf.org) are providing 
the basic blue prints for grid components. Of course, a standard by itself is 
not sufficient condition as it also requires adoption and consensus. One prob- 
lem is that the ecosystem is rather too rich in standards and it is difficult to 
understand what will be successful and what will not, e.g. OGSI. At some 
level this richness is good in that the space will be sufficiently explored and 
the best candidate standards will be adopted. Of course, in order for grids to 
become successful there has to be some stability in the standards space, and 
their implementations, so that end-users gain sufficient confidence to migrate 
to the new technology. 

Within the context of OGSA-DAI the intent was to have a twin track ap- 
proach: OGSA-DAI would be the implementation and through the GGF DAIS 
Working Group (forge.gridforum.org/projects/dais-wg) the implementation 
would both be standardised and at the same time inform the standardisation 
process - a symbiotic process. In reality, the implementation and DAIS spec- 
ifications diverged, with the implementation having to support existing users 
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and the specification having to agree details with all parties. Nevertheless, 
the resulting Web Services - Database Access and Integration (WS-DAI) [32, 
3 11 family of specifications attempt to promote databases to be first class cit- 
izens within the grid world. Currently, relational and XML databases are 
catered for but the model is extensible to allow other types of data models such 
as files, object databases and RDF data sources2. The intent is for OGSA-DAI 
to track and implement these where possible. 

Standards help to enable interoperability between implementations, some- 
thing which we have pursued through DIALOGUE (www.datagrids.org). In 
particular, OGSA-DAI has been keen to see the emergence of a standard for 
bulk data transfer between web services (for which we currently provide the 
proprietary Grid Data Transport porttype). 

Thus despite the proliferation of standards, they still serve to provide the vi- 
sion, such as OGSA [34], and the basic nuts and bolts to allow the construction 
of interoperable grids. 

9. Conclusions 
This chapter has reviewed the benefits of being able to construct grids that 

address the data requirements of a VO and how web services offer one pos- 
sible abstraction that facilitates this process. OGSA-DAI has taken the web 
service approach to sharing data - particularly structured data like databases 
- within grids. OGSA-DAI has been constructed with extensibility in mind 
allowing additional functionality to be added through activities, new data re- 
sources through data resource accessors and the security mechanisms to be ex- 
tended through the authorization callouts. A number of design principles have 
been employed which attempt to maximise the benefits in using OGSA-DAI: 
minimising data movement, encapsulating multiple web service interactions 
in a single document - the perform document - and to moving computation 
close to the data. As such, OGSA-DAI occupies a unique position with regard 
to related products that also facilitate access to data on grids. Development of 
OGSA-DAI is driven by user requirements and scenarios and future extensions 
include extensions to the perform document, support for transactions, security 
at the activity level and general data integration activities. 

The grid world is progressing rapidly and we hope OGSA-DAI will con- 
tinue to evolve and satisfy the needs of those building grids. The OGSA-DAI 
project continues to address the differences that prevent data sharing and en- 
able the acheivement of additional data scenarios. Up-to-date information on 
the project is available from our website (www.ogsadai.org.uk). 

2~ prototype implementation of RDF as an OGSA-DAI resource already exists, see 
www.gtrc.aist.go.jp/dbgrid/sc05/. 
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Abstract To date there have been several efforts with a view to developing services that 
support and enable data integration on the Grid; however there is a lack of a 
comprehensive solution to this issue. This paper summarises the work thus far on 
the XMAP data integration framework and query reformulation algorithm and 
on middleware with regard to Grid query processing services, namely OGSA- 
DQP. Furthermore, it presents an architecture for data integration-enabled query 
processing on the Grid, which combines the two aforementioned pieces of work 
and provides an extended set of e-Services. These services allow users to submit 
queries over a single database and receive the results from multiple databases 
that are semantically correlated with the former one. The paper focuses on the 
service choreography involved by elaborating on the interactions between the 
services, and discusses the extensions to OGSA-DQP that are required in order 
to make the services interoperable. 
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1. Introduction 

The Grid, as an emerging infrastructure for the discovery, access and use of 
distributed computational resources [15], offers new opportunities and raises 
new challenges in data management. Many aspects differentiate the Grid from 
a traditional distributed environment; such aspects include the large scale, dy- 
namic, autonomous, and distributed nature of data sources. A Grid can include 
related data resources maintained in different syntaxes, managed by different 
software systems, and accessible through different protocols and interfaces. 
Due to this diversity in data resources, one of the most demanding issue in 
managing data on Grids is reconciliation of data heterogeneity [8]. There- 
fore, in order to provide facilities for addressing requests over multiple hetero- 
geneous data sources, it is necessary to provide data integration models and 
mechanisms. 

Data integration is one of the most persistent problems that the database and 
information management community has to deal with. Although significant 
progress has been made in several aspects of data integration, the increase in 
availability of web-based data sources has led to new challenges. More specif- 
ically, efficient techniques have been developed and approaches have been de- 
vised to schema mediation languages, query answering algorithms, optimi- 
sation strategies, query execution policies, industrial development, and so on 
[17]. However, effective techniques for the generation and handling of seman- 
tic mappings are still in their infancy. The need for semantic correlation of data 
sources is particularly felt in Grid settings. Moreoever, in a Grid, a centralized 
structure for coordinating all the nodes may not be practical because it can be- 
come a bottleneck and, more importantly, it cannot accommodate the dynamic 
and distributed nature of Grid resources. 

Data access and integration services have been attracting significant inter- 
est from the Grid community. Data Grids that rely on the coordinated sharing 
of and interaction across multiple autonomous database management systems 
play a key role in many industrial and scientific initiatives. To this end, middle- 
ware services have been developed. Two notable examples are the OGSA Data 
Access and Integration (OGSA-DAI) [6] and the OGSA Distributed Query 
Processor (OGSA-DQP)' [5,4] projects. These projects have moved toward 
a servide-oriented architecture quite early in their lifecycle. OGSA-DAI ex- 
poses database management systems (including Oracle, MySQL, SQLServer, 
DB2, and so on) in a uniform way, whereas OGSA-DQP provides distributed 
query processing functionalities on top of OGSA-DAI. As such, OGSA-DQP 
can combine and integrate data from multiple data sources. To enhance per- 
formance, it employs parallel query execution techniques; nevertheless it relies 

'OGSA-DQP is publicly available in open source form from www.ogsadai.org.uk/dqp. 
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on the user for the semantic interpretation of the data and does not address any 
schema integration requirements. 

To date, only few projects (e.g., [ l l ,  91) actually meet the schema- 
integration requirements that are necessary for establishing semantic connec- 
tions among heterogeneous data sources. To address this limitation, the use of 
the XMAP framework for integrating heterogeneous data sources distributed 
over a Grid has been proposed [12] . The aim of this framework is to develop 
a decentralized network of semantically related schemas, so that the formula- 
tion of distributed queries over heterogeneous data sources is enabled. XMAP 
employs a decentralized point-to-point mediation approach to connect differ- 
ent data sources based on schema mappings in order to combine remote XML 
documents. The XMAP framework is also exposed as an additional e-Service, 
called Grid Data Integration Service (GDIS). The contribution of the paper is 
the presentation of a unifying infrastructure for distributed query processing 
and query reformulation driven by semantic connections. The infrastructure 
proposed exploits the middleware provided by OGSA-DQP and OGSA-DAI, 
to provide schema-integration services. The integration and coordination of 
different services is the topic of service choreography. In this paper, we exam- 
ine in detail how OGSA-DAIIDQP and GDIS are combined. 

The remainder of the paper is organized as follows. Section 2 presents a 
short analysis of data integration systems focusing on the issues that are more 
relevant to Grids. The integrative architecture that combines the query refor- 
mulation and the query processing services, along with their interaction, is the 
subject of Section 3. Section 4 presents the XMAP integration framework, and 
describes the underlying integration model and the XMAP query reformulation 
algorithm. Section 5 discusses a simple example of applying the XMAP algo- 
rithm to OGSA-DQP supported relational databases, elaborating on how the 
service integration is achieved in practice and how the architecture proposed 
can be further extended. Finally, Section 6 concludes the paper. 

2. Background 

Both areas of data integration and Grid computing benefit from their com- 
bination: 

data integration is a key issue for exploiting the availability of large, 
heterogeneous, distributed and highly dynamic data volumes on Grids; 

a integration formalisms can benefit from an OGSA-based Grid infrastruc- 
ture, since such an infrastructure facilitates dynamic discovery, alloca- 
tion, access, and use of both data and computational resources, which 
are required to support computationally demanding database operations 
such as query reformulation, compilation and evaluation. 
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Data integration on Grids has to deal with unpredictable, highly dynamic 
data volumes provided by unpredictable membership of nodes that happen to 
be participating at any given time. So, traditional approaches to data integra- 
tion, such as federation database management systems (FDBMS) [22] and the 
use of mediatorlwrapper middleware [21], are not suitable in Grid settings. 

The federation approach is a rather rigid configuration where resource al- 
location is static and optimization cannot take advantage of evolving circum- 
stances in the execution environment. The design of mediatorlwrapper inte- 
gration systems must be done globally, and the coordination of mediators is 
performed by a central administrator, which is an obstacle to the exploitation 
of evolving characteristics of dynamic environments. As a consequence, these 
approaches are insufficient when data sources change often and to a significant 
extent, since such changes may violate the mappings to the mediated schema. 

Recently, several works on data management in peer-to-peer (P2P) systems 
are moving towards decentralized, wide-scale sharing of semantically-related 
data [7, 10, 16, 18, 191. All these systems focus on an integration approach, 
which is not based on a global schema: each peer represents an autonomous 
information system, and data integration is achieved by establishing mappings 
between the various peers. 

To the best of our knowledge, there are only few works designed to pro- 
vide schema-integration in Grids. The most notable ones are Hyper [I 11 and 
GDMS [9]. Both systems are based on an approach similar to ours, i.e., to 
build data integration services by extending the reference implementation of 
OGSA-DAI. The Grid Data Mediation Sewice (GDMS) is part of the Grid- 
Miner project [16] and uses a wrapperlmediator approach based on a global 
schema. GDMS presents heterogeneous, distributed data sources as one logi- 
cal virtual data source in the form of an OGSA-DAI service. The main differ- 
ence from our work is that it relies on the existence of a global schema, which 
is not that realistic in Grids. Hyper is a framework that integrates relational 
data in P2P systems built on Grid infrastructures. As in other P2P integration 
systems, the integration is achieved without using any hierarchical structure 
for establishing mappings among the autonomous peers. In that framework, 
the authors use a simple relational language for expressing both the schemas 
and the mappings. Our integration model follows an approach not based on a 
hierarchical structure as well, however it focuses on XML data sources and is 
based on schema-mappings that associate paths in different schemas. Finally, 
semantic mapping across relational databases coupled with a global-as-view 
approach is investigated in the context of the SASF project 131. 
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Figure I .  Data integration-enabled query processing on the Grid: service interactions. 

3. Architecture and Service Interactions 

The XMAP query reformulation algorithm, presented in more detail in the 
following section, is deployed as a stand-alone service, called Grid Data In- 
tegration Service (GDIS). Given an XPath query over a local database, it re- 
turns the equivalent XPath queries that retrieve semantically similar data from 
remote databases. Figure 1 provides an overview of the service interactions 
involved in the incorporation of data integration functionality in distributed 
query processing on the Grid. It focuses on the interactions that concern the 
GDIS, and thus it hides all the complexities that relate to (distributed) query 
submission and execution. As such, it complements the service interactions 
between the OGSA-DAI and DQP services. 

OGSA-DQP is an open source service-based Distributed Query Processor; 
as such, it supports the evaluation of queries over collections of potentially re- 
mote data access and analysis services. OGSA-DQP uses Grid Data Services 
provided by OGSA-DAI to hide data source heterogeneities and ensure con- 
sistent access to data and metadata from any database resource. The current 
version of OGSA-DQP, OGSA-DQP 3.0 is Globus Toolkit 4 compliant [9]. 
Thus OGSA-DQP builds upon the WSRF infrastructure. 

OGSA-DQP provides two additional types of services, Grid Distributed 
Query Services (GDQSs) and Grid Query Evaluation Services (GQESs) or sim- 
ply Query Evaluation Services (QESs). The former are visible to end users, ac- 
cept queries from them, construct and optimise the corresponding query plans 
and coordinate the query execution. GQESs implement the query engine, inter- 
act with other services (such as OGSA-DAI services, ordinary Web Services 
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and other instances of GQESs), and are responsible for the execution of the 
query plans created by a GDQS. The interactions and functionality of OGSA- 
DQP services are described in detail in [4]. In the latest OGSA-DQP version, 
GQESs have been refactored as ordinary Web Services, augmenting the ap- 
plicability of OGSA-DQP, as its deployment has been simplified significantly, 
whereas several interdependencies have been removed. 

For the unifying architecture, the following architectural assumptions are 
made. A GDIS is deployed at each site participating in a dynamic database 
federation and has a mechanism to load local mapping information. It imple- 
ments an additional portQpe, namely Query Reformulation Algorithm (QRA) 
portType, which accepts XPath expressions, applies the XMAP algorithm to 
them, and returns the results. A database can join the system as in OGSA- 
DQP: registering itself in a registry and informing the GDQS. The only differ- 
ence is that, given the assumptions above, it should be associated with both a 
GQES and a GDIS. 

Also, there is one GQES per site to evaluate (sub)queries, and at least one 
GDQS. As in classical OGSA-DQP scenarios, the GDQS contains a view of 
the schemas of the participating data resources, and a list of the computational 
resources that are available. The users interact only with a GDQS service 
through a client application that need not be exposed as a service. 

A comprehensive data integration architecture needs to combine both the 
query reformulation and the query processing services. The interactions of the 
services, which form the choreography for data integration, are as follows (see 
also Figure 1): 

I The client contacts the GDQS and requests a view of the schema for each 
database helshe is interested in. At this point, there is no assumption 
that the user has an a-priori knowledge of the semantics of this and the 
semantically-related databases. 

2 Based on the retrieved schema, helshe composes an XPath query, which 
is sent to the GDQS, and not directly to the corresponding database ser- 
vice, following the OGSA-DQP approach. 

3 The GDQS transforms, parses, optimises, schedules and compiles a 
query execution plan [23]. This process entails the identification of the 
relevant sites, and consequently their local GQES and GDIS. The re- 
sulting query execution plan is sent to the corresponding GQES, which 
returns the results asynchronously, after contacting the local database via 
an OGSA-DAI service. 

4 The initial XPath expression is sent to the GDIS that is co-located with 
the GQES of the previous step to perform the XMAP algorithm. GDIS 
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retrieves the locally stored mapping schema, which contains the map- 
ping information that links the paths in the submitted query with paths 
referring to other databases. 

5 As long as the call to the GDIS returns at least one XPath expression that 
has not been considered yet in the same session, the following steps are 
executed in an iterative manner. 

(a) The results of the call to the GDIS, which contain a set of XPath 
expressions, are collected by the GDQS. Subsequently, the GDQS 
filters out the ones that have already been processed in the current 
session. 

(b) Each remaining XPath expression is processed as in Step 3 to col- 
lect results from databases other than the one initially considered. 

(c) The same XPath expressions are processed as in Step 4 to find 
additional correlated queries. 1.e. there is a loop which continu- 
ously generates XPath queries until all the relevant data has been 
retrieved. 

4. The XMAP Integration Framework 
The primary design goal of the XMAP framework is to develop a decentral- 

ized network of semantically related schemas that enables the formulation of 
queries over heterogeneous, distributed data sources. The environment is mod- 
elled as a system composed of a number of Grid nodes, where each node can 
hold one or more XML databases. These nodes are connected to each other 
through declarative mappings rules. 

The XMAP integration [12] model is based on schema mappings to trans- 
late queries between different schemas. The goal of a schema mapping is to 
capture structural as well as terminological correspondences between schemas. 
Thus, in [12], we propose a decentralized approach inspired from [18] where 
the mapping rules are established directly among source schemas without rely- 
ing on a central mediator or a hierarchy of mediators. The specification of map- 
pings is thus flexible and scalable: each source schema is directly connected 
to only a small number of other schemas. However, it remains reachable from 
all other schemas that belong to its transitive closure. In other words, the sys- 
tem supports two different kinds of mapping to connect schemas semantically: 
point-to-point mappings and transitive mappings. In transitive mappings, data 
sources are related through one or more "mediator schemas ". 

We address structural heterogeneity among XML data sources by associ- 
ating paths in different schemas. Mappings are specified as path expressions 
that relate a specific element or attribute (together with its path) in the source 
schema to related elements or attributes in the destination schema. The map- 
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ping rules are specified in XML documents called XMAP documents. Each 
source schema in the framework is associated to an XMAP document contain- 
ing all the mapping rules related to it. 

The key issue of the XMAP framework is the XPath reformulation algo- 
rithm. When a query is posed over the schema of a node, the system uti- 
lizes data from any node that is transitively connected by semantic mappings, 
and reformulates the given query expanding and translating it into appropriate, 
equivalent queries over semantically related nodes. Every time the reformu- 
lation reaches a node that stores no redundant data, the appropriate query is 
posed on that node, and additional answers may be found. As a first step, we 
consider only a subset of the full XPath language. 

Figure 2 shows the service interface of the Grid Data Integration Service, 
which defines Query Reformulation Algorithm (QRA) portType. Such a service 
is interoperable with any other common Web and Grid Services. 

5. Combining query processing and reformulation 
services 

The XMAP algorithm can be used for data integration-enabled query pro- 
cessing in OGSA-DQP. The example discussed in this section aims to show 
how the XMAP algorithm can be applied on top of the OGSA-DAI and OGSA- 
DQP services. In the example, we will assume that the underlying databases, 
of which the XML representation of the schema is processed by the XMAP 
algorithm, are, in fact, relational databases, like those supported by the current 
version of OGSA-DQP. 

We assume that there are two sites, each holding a separate, autonomous 
database that contains information about artists and their works. Figure 
3 presents two self-explanatory views: one hierarchical (for native XML 
databases), and one tabular (for object-relational DBMSs). 

In OGSA-DQP, the table schemas are retrieved and exposed in the form of 
XML documents, as shown in Figure 4. 

The XMAP mappings need to capture the semantic relationships between 
the data fields in different databases, including the primary and foreign keys. 
This can be done in two ways, which are illustrated in Figures 5 and 6, respec- 
tively. Both the ways seem to be feasible. However, the second one is slightly 
more comprehensible, and thus more desirable. 

The actual query reformulation occurs exactly as described in [12]. Ini- 
tially, the users submit XPath queries that refer to a single physical database. 
E.g., /Sl/Art ist [style= llCubismll I /name extracts the names of the 
artists whose style is Cubism and their data is stored in the SI database. Sim- 
ilarly, / S 1 /Artefact / t i t 1 e returns the titles of the artifacts in the same 
database. When the XMAP algorithm is applied for the second query, two 
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c?xml version="l.O"?> c!-- root element wsd1:definitions defines 
set of related services--> 

cwsd1:definitions name="QueryReformulation" 
xmlns:qr="http:// . . .  /QueryReformulation.wsdl'~ 
xmlns:qrxsd="http:// . . .  /QueryReformulation.xsd" 
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/~~ 
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"~ 

cwsdl:types> 
cxsd:schema targetNamespace=" . . . "  

xmlns:xsd="http://www.w3.org/l999/XMLSchema"> 
<xsd:element name="ArrayOfStringn> 
cxsd:complexType > 
cxsd:sequence> 
cxsd:element name="XPathQueryU 

type="xsd:string0' minOccurs="O" maxOccurs="unbounded"/> 
c/xsd:sequence> 
c/xsd:complexType> 
c/xsd:element> 
c/xsd:schema> 
c/wsdl:types> cwsd1:message name='squeryToReformulate" > 
cwsd1:part name="inputQueryM element="~sd:string'~/> 
c/wsdl:message> cwsd1:message name="reformulatedQueriesv > 
<wsdl:part name="reformulatedQuery" element="qrxsd:ArrayOfString0'/> 
c/wsdl:message> cwsd1:portType name="QRAPortType"> 
<wsdl :operation name="reformulation"> 

cwsdl: input message="qr:queryToReformuate/> 
cwsdl: input message="qr:reformulatedQueries/> 

cwsdl:operation/> 
<wsdl:portType/> <wsdl:binding 
name="QueryRef ormulationSoapBinding" type="qr : QmPortType" > 
<soap:binding style="document" 

transport="http://schemas.xmlsoap.org/soap/httpq~/> 
cwsd1:operation name="reformulation"> 
<soap:operation soapAction=" . . . "  / >  
<wsdl:input> 
csoap:body use="literalU namespace='*..."/> 

c/wsdl:input> 
cwsd1:outputr 
<soap:body use="literaltt namespace="..."/> 

c/wsdl:output> 
<wsdl:fault> 
csoap:body use="literalm namespace="..."/> 

</wsdl:fault> 
c/wsdl:operation> 

</wsdl:binding> 
cwsd1:service name="QueryReformulationService"> 
<wsdl:documentation> . . .  c/wsdl:documentation> 
<wsdl :port name="QFAPortType" 

binding="qr:QueryReformulationSoapBinding"> 
<soap:address location="..."/> 

c/wsdl:port> 
c/wsdl:service> 
c/wsdl:definitions> 

Figure 2. The interface of the Grid Data Integration Service. 

more XPath expressions will be created that refer to the S2 database: 
/ S 2 / P a i n t i n g / T i t l e  and / S 2 / S c u l p t o r / A r t e f a c t .  At the back- 
end, the following queries will be submitted to the underlying databases (in 
SQL-like format): 

se lec t  t i t l e  f r o m  A r t e f a c t ; ,  
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Site S2 Info 

// \\ 
code first-name last-name kind 

/\ 

Site S l  Artist Artefact 

Sculptor painter 

School Painting Artfact style 

I 

id style name artefact 

title category 

title 

Figure 3. The example schemas. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

id 

se lect  t i t l e  f r o m  P a i n t i n g ; ,  and 
se lec t  A r t e f a c t  f r o m  S c u l p t o r ;  
Note that the mapping of simple ~ ~ a t h  expressions to SQL/OQL is feasible 

[20]. However, solving the mismatch between OQL and XPath, is not the 
only problem. The grid querying services provided from OGSA-DQP cannot 
support the proposal of this paper as they are. The modifications required are 
presented in more detail in the following subsection. 

style 

5.1 A Summary of the Extensions Envisaged to the 
Current Querying Services 

name 

The afore-mentioned architecture, apart from the development of the new 
GDIS service, implies some extensions to the current services and clients that 
are available from OGSA-DAI and OGSA-DQP. These extensions are, in our 
view, reasonable and feasible, and thus make the overall proposal of practical 
interest. They are summarised below: 

Currently, GDQS does not reveal any information on the database to 
which a table belongs, as the purpose of OGSA-DQP is to present a 
unified view of all the database schemas to the user hiding the locality 
details. However, in the proposed architecture, the user requirements 
change and the queries are submitted to a single physical database. As 
such, the client should expose the schemas per database rather than as a 
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cdatabaseschema dbname="SlM> 
ctable name="ArtistU> 

<column name="idW / >  
ccolumn name="style" / >  
ccolumn name="nameu / >  
<primaryKey> 

<columnName>idc/columnName> 
c/primaryKey> 

</table> 
<table name="Artefact"> 

<column name="artist-idt* / >  
ccolumn name="titleU / >  
ccolumn name="categoryU />  

</table> 
</databaseschema> 

<databaseschema dbname="SZ"> 
<table name="InfoM> 

<column name="idU / >  
<column name="codeU / >  
ccolumn name="first-name" / >  
<column name="last-name" / >  
ccolumn name="kindU / >  
<primaryKey> 

<columnName>idc/columnName~ 
</primaryKey> 

</table> 
ctable name="PainterU> 

ccolumn name="painter-id" / >  
<column name="info-id" / >  
ccolumn name="school" / >  
<primaryKey> 

<columnName~painter_idc/columnName> 
c/primaryKey> 

</table> 
ctable name="Painting"> 

ccolumn namenupainter id' / >  
ccolumn name="titleu 7> 
<primaryKey> 

<columnName>title</columnName> 
c/primaryKey> 

</table> 
ctable name="Sculptor"> 

<column name="info-idu / >  
ccolumn name="artefactV / >  
ccolumn name="styleU / >  

</table> 
</databaseschema> 

Figure 4. The XML representation of the schemas of the example databases. 

iii) databaseschema[@dbname=Sll/table[~me=Artist/column@name=id - >  
database~chema[@dbname=~2l/table[@name=1nfo/column~@name=idl 

iv) database~chema[@dbname=~ll/table[@name=~rtefactl/column[@name=artist~idl 
- >  databaseSchema[@dbname=S2l/table[@name=Painterl/column[@name=info~idl, 
databaseSchema~@dbname=S2l/table[@name=Sculptorl/column~@name=info~idl 

Figure 5. The XMAP mappings. 
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Figure 6. A simpler form of the XMAP mappings. 

unified view, so that it becomes evident what exactly data each database 
holds. 

GDQS should be capable of accepting XPath queries, and of transform- 
ing these XPath queries to OQL before parsing, compiling, optimizing 
and scheduling them. Such a transformation falls in an active research 
area (e.g., [14, S]), and, in our architecture, is realised as an additional 
component within the query compiler. 

GDQS should implement an additional XMAP-related activity that, 
given an XPath expression, finds the corresponding GDIS, and calls the 
XMAP on it. The activity returns a set of corresponding XPaths. 

The client should be capable of aggregating results stemming from mul- 
tiple queries. 

GDQS should be capable of accepting requests that contain more than 
one (XPath) statement. 

Also, GDIS should be capable of processing requests that clean, update 
and install mapping documents. 

Looking Ahead 

The proposed architecture provides added value to the existing querying 
services, and increases the scope of the applications that may use them. It cre- 
ates a middleware infrastructure that can be enhanced with more functionality. 
With a view to incorporating more features, the following stages of extensions 
have been identified: 

Stage A: XPath is a simple language, and, as such, it cannot cover many of 
the common user requests. It is expected that more extensive use of the 
knowledge about keylforeign-key relationships will be required in order 
to reformulate more expressive queries (such as XQuery, SQL and OQL 
correctly) or to support a more complete set of XPath. When the paths in 
a XPath query refer to different branches of the tree of the correspond- 
ing XML document, the relevant OQLISQL query typically contains a 
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join, as it is more convenient to map such branches to distinct relational 
tables. However, the join condition is implied and cannot be directly 
derived from the XPath expression. Consequently, the knowledge of the 
keylforeign-key between tables is essential for the correct reformulation 
of a wider range of XPath queries in our proposal. 

Stage B: OGSA-DQP naturally provides the capability to submit queries over 
distributed sources in a manner that is transparent to the user. The 
XMAP reformulation algorithm, as presented in [12], returns a new 
query only if that query can be evaluated across a single database as 
well; this is one of the validity criteria. In order to use the capability 
of OGSA-DQP to evaluate distributed queries across multiple databases 
in the future, some (non-extensive) changes in the validity criteria of 
reformulated queries in the XMAP algorithm will be required. 

Stage C: A more challenging problem is to allow distributed query reformu- 
lation. This raises a new set of issues, which include the selection of the 
site that should hold the mappings, the identification of any further meta- 
data at the GDQS-level that is required, and ensuring that non-duplicate 
results are produced. More specifically, in the proposed architecture, 
the decision on which GDI Service should perform the query reformula- 
tion is straightforward; it is the one that is co-located with the database 
that holds the data retrieved by the relevant query, and this service con- 
tains the full set of the mapping information required. However, when 
multiple databases are accessed in the same query, this policy has to be 
revised. 

Stage D: Finally, we plan to explore alternative architectures, and especially 
architectures in which the GDISs may not be co-located with GQESs, 
and can be shared between multiple sites. A simple approach could be 
to have a single GDI Service that contains the full mapping informa- 
tion concerning all the semantically similar databases. However, such 
an approach is not scalable. If there are multiple GDZSs, which are not 
co-located with GQESs, then a co-ordination issue arises as to how (i.e., 
according to which protocol) the services interact and exchange knowl- 
edge. To this end, adopting techniques from peer-to-peer models is a 
promising strategy. 

6. Conclusions 

The contribution of this work is the proposal of a unifying architecture and 
of an approach that integrates a data integration methodology with existing 
e-Services for querying distributed databases with a view to providing an en- 
hanced, data integration-enabled service middleware. The resulting architec- 
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ture remains service-oriented, and, as such, the service choreography issues are 
important. The paper explains in detail how the distinct services can interact in 
order to accomplish the non-trivial task of evaluating remote queries submitted 
by the user, while, at the same generating automatically new queries that return 
semantically similar results from different data sources. The data integration 
is based upon the XMAP framework that takes into account the semantic and 
syntactic heterogeneity between different data resources, and provides a recur- 
sive query reformulation algorithm. The Grid services used as a basis are the 
outcome of the OGSA-DAIIDQP projects, which have paved the way towards 
uniform access and combination of distributed databases. 

In summary, in this paper (i) we propose an integrated service-oriented ar- 
chitecture; (ii) we explain how we can achieve interaction between the various 
services; (iii) we show how these services can be used together through an ex- 
ample; (iv) we discuss in detail the implementation issues involved; and (v) 
finally, we provide insights into how the architecture can be further extended. 
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The BioDA project is investigating how Bioinformatics Grids, a data and com- 
pute intensive domain, could benefit from using a standard framework, such as 
OGSA-DAI, to manage access and integration of distributed heterogeneous data 
resources. In this paper, we outline the common data access and integration 
requirements from the bioinformatics community. We then highlight some spe- 
cific issues encountered while designing an OGSA-DAI exemplar application for 
BiodiversityWorld, a Biodiversity Grid that specialises in extracting knowledge 
from correlating a plethora of distributed heterogeneous data sources accesible 
via the Web in the study of biodiversity patterns. 

bioinformatics, biodiversity, biodiversity informatics, data access, data integra- 
tion, OGSA-DAI. 

'Work supported by Biotechnology and Biological Sciences Research Council grant BBICS 1084011 



36 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS 

1. Introduction 

Within the diverse field of bioinformatics, there are many types of data anal- 
ysis, both inter- and intra-disciplinary, which generate as many types of data 
and databases. The increased computational capacity of the Grid makes it 
possible for scientists to correlate and combine large numbers of datasets to 
identify patterns and formulate hypotheses, which can be tested using further 
datasets and transformed into useful knowledge [I]. The output from such 
research activities, in turn, generate yet more datasets that will need to be inte- 
grated into further analyses. 

The bioinformatics projects supported within the UK eScience programme 
have recognised the need for accessing and integrating data from both new 
and legacy data sources. As a consequence, solutions to the data management 
problems have been implemented individually by each project according to 
their needs. 

For example, the Biodiversity World (BDWorld [2-41) Project is creating 
a problem-solving environment (PSE) targeted at providing support for biodi- 
versity researchers to use common software tools in a Grid environment, and 
to use them to analyse data held in a variety of databases and data stores. BD- 
Worlds middleware for data access and communications has been developed 
so that it can cope with changes caused by the evolving Grid middleware. BD- 
World is being interfaced to software previously developed by project partners 
in the SPICE project [5] to co-ordinate access to some of the databases and an- 
alytic tools that have been made available to BDWorld. In SPICE a CAS (Com- 
mon Access System) hub was created to allow heterogeneous databases (often 
managed by legacy database systems) to be wrapped, accessed and linked to 
form a Catalogue of Life for the international Species 2000 project [6]. In 
the BDWorld project this prototype Catalogue of Life is used to provide taxo- 
nomic data about species which is then linked with data from biotic and abiotic 
datastores. These are wrapped in a somewhat different way from the SPICE 
databases, since a fixed common data model is not appropriate for the more 
diverse range of data used in BDWorld (see Section 3). This data includes 
geographical data about the distribution of species, climate data, genetic struc- 
ture and sequence data. Existing analytic tools, such as tools for modelling 
a species climatic niche, are also wrapped for inclusion in the PSE. The data 
is linked by the PSEs tools to enable bioinformatics users to investigate sci- 
entific questions such as the biodiversity richness in regions of interest; the 
effect of climate change on the biodiversity of a region, and the usefulness of 
geographical data in refining phylogenetic hypotheses. 

In parallel with the application projects in bioinformatics, the Open Grid 
Services Architecture - Data Access and Integration (OGSA-DAI) project [7] 
has been designing generic middleware to assist with access and integration of 
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data from disparate data sources across the Grid, for use in a wide variety of e- 
Science projects. The first releases of OGSA-DAI implemented the Open Grid 
Services Infrastructure (OGSI) specification [8] and were built on the Globus 
toolkit (GT) [9] platform. Using the OGSA-DAI framework, external data re- 
sources can be incorporated within the OGSA framework and made accessible 
via a standard Grid service interface, offering uniform interfaces for accessing, 
querying and processing data stored in relational and XML databases as well 
as flat files. Figure 1 gives a basic example of using OGSA-DAI OGSI grid 
services to access a database. The software has since evolved from OGSI to 
the WS-RF [8] and WS-I [ l  11 specifications. 

1. request to reglstry for 
sources of data 

//2. reglstry responds wlth 
GDSF factory handle 

................. > SOAPMTTP 

........................ ) service creatlon 

I f > API Interactions 

GDSF 
5. factory returns 

GDS handle 
1 4. factory creates a 
I translent GDS 

to Inanage access 

RelattonallXM 
7. GDS lneracts 

---_____L---L--- with data 
resource 

Figure 1. Basic data access using OGSA-DAI OGSI Grid services. 

In spite of the functionality offered by OGSA-DAI, it became clear that the 
middleware was not being used in bioinformatics projects to any great extent. 
In discussions with investigators from various projects we found that this was 
mostly due to reluctance on their part to use emerging prototype software part- 
way through their projects. These projects were high risk developments be- 
cause of the large scale collaborations involved and the utilisation of immature 
Grid software. Thus the staff of these projects did not want to add another un- 
known factor into their development strategies. It should also be remembered 
that the start of the OGSA-DAI project coincided approximately with the start 
of these projects. 

The Bioinformatics and DAIT (BioDA [12]) project is a one-year study 
funded by the UK Biotechnology and Biological Sciences Research Council 
to investigate the benefits of using OGSA-DAI in bioinformatics Grids. The 
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project aimed to establish communication between bioinformatics projects and 
DAIT (the team continuing OGSA-DAI development), to elicit requirements 
from bioinformatics projects, and to collate case studies involving existing 
bioinformatics projects. The latter includes prototyping an OGSA-DAI ex- 
emplar for BDWorld to access remote web databases. BDWorlds database 
handling is characterised by the diversity of the types of database used, the 
heterogeneity of the data with respect to its representation, and the variety 
of data being held and used in the analysis environment. This makes it an 
ideal test bed for OGSA-DAI as it will present many of the problems that such 
database middleware should be able to overcome more easily than traditional 
approaches to interoperability 

In this paper we will highlight the generic data integration requirements 
gathered from the bioinformatics community, and examine some specific data 
integration issues arising from introducing OGSA-DAI to the BDWorld Grid. 

2. Generic Bioinformatics Data Access and Integration 
Requirements 

The first BioDA workshop brought together architects and infrastructure 
developers from the bioinformatics domain and DAIT project to examine the 
communitys data access and integration needs with particular reference to 
OGSA-DAI. 

The workshop identified 17 key requirements and these were refined through 
a survey of 8 bioinformatics projects at various stages of development [13]. 
Our findings indicate that these projects are particularly keen to see OGSA- 
DAI offering more support for the following features. 

1 schema integration; 

2 schema mapping; 

3 mixed language query; 

4 complex join across databases; 

5 provenance data; 

6 flexible resource discovery facilitated by a richer metadata registry; 

7 RDF database access. 

The first four requirements map directly to data integration functionalities. 
The remaining three items reflect implicit needs for better metadata which 
will facilitate the selection and the location of distributed data resources via 
a metadata-driven two-step access to data [14]. These priorities are a conseqe- 
unce of the nature of bioinformatics, where data sources typically have large, 
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complex structures which reflect the richness of the scientific concepts that 
they model. Many of these data sources are related and cover roughly the same 
domain, eg. genes, sequence annotations, digital protein models [15]. The 
ability to integrate related but heterogeneous data will greatly facilitate the 
task of scientific discovery. The OGSA-DAI interfaces expose heterogeneous 
data sources as a single logical one and allow a client application to access the 
data in a uniform manner. But OGSA-DAI on its own does not make a data 
grid. Client programmers will still need to be aware of the types of data re- 
sources being accessed and accounts for the structural heterogeneities and the 
differences between query dialects. 

The DAIT team may see many of the listed items as outside its original 
remit, and, therefore, as features which could be provided elsewhere. For 
instance, schema mapping has been implemented by projects such as Grid- 
Miner [16] as part of a higher-level mediation service layered over OGSA- 
DAI. We recognise this argument, but these requirements are highly desirable 
to bioinformatics project practitioners and their implementation would greatly 
enhance OGSA-DAIS appeal to potential users in this domain. 

Apart from the calls for more functionality, our findings show that bioin- 
formatics projects with commercial userslpartners are very anxious about the 
security of their data. They have sought reassurance over the security of the 
data delivery mechanisms and even the latency of the subsequent footprint that 
the data leaves on the server. The issue is further complicated by the lack of 
coherent security models with the evolving WS-RF and WS-I specifications 
which OGSA-DAI now supports. This issue needs to be resolved, if bioin- 
formatics projects with commercial userslpartners are not to be deterred from 
adopting the product despite its utility. 

OGSA-DAIS recent migration to Globus WS-RF, WS-I and OM11 WS- 
I+ [17] platforms has also affected users confidence in the product. Infra- 
structural changes are disruptive and perceived as risky to project develop- 
ment. Our respondents have highlighted the need for OGSA-DAI to provide 
backward compatibility and to minimise the effects of migration on current 
client users. On the issue of support, we suggest that an official policy relating 
to the establishment of a medium to long-term support service, i.e. beyond the 
current funding lifetime of the OGSA-DAIIDAIT project, would help reassure 
potential users that the product is not going to become unusable through the 
lack of continued maintenance. 

In this section, we have highlighted the principal data access and integration 
requirements gathered via the BioDA workshop and survey. Further details 
may be found in the BioDA Final Report [13]. The information gathered has 
been fed back to the OGSA-DAIIDAIT team to assist with the development of 
their product. 
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3. BDWorld Data Integration Issues 

In this section, we outline the design and some data access and integration 
issues encountered while developing an OGSA-DAI (R5) exemplar for BD- 
World. The exemplar is based on the bio-climatic and ecological niche BDW 
use case and focuses specifically on the retrieval of geo-spatial locality data 
from globally distributed databases. The bio-climatic exemplar uses the known 
localities of a species and cross-references these with present day climate data 
to derive the species climate preference profile. This profile is then used to lo- 
cate other geographical areas where such a climate exists and would be suitable 
habitat for the target species [3]. 

I BDW HarnessMTorMow Manager I 

Figure 2. BDWorld locality data resource layer 

First we review the distinctive characteristics of the BDWorld Grid that have 
influenced the design. A particular feature of BDWorld is its use of heteroge- 
neous, legacy data resources with diverse structures and data standards. Many 
of these are Internet information resources only accessible via the HTTP pro- 
tocol in XML format, or even as HTML pages, in which case screen scrap- 
ing techniques are required. BDW currently has 11 locality data resources, 
comprising five local databases under the BDW administrative domain and six 
globally distributed data providers (see Figure 2). The remote data resources 
are autonomous web data servers exposed through different frameworks, eg. 
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HTMLICGI, JSP and web services. OGSA-DAI does not currently support 
access to these types of resources. 

The user interface to BDWorld is provided through the Triana [18] workflow 
management system, BDWorld has also taken the position that any computa- 
tionally intensive tasks within a scientific workflow, such as a data access, will 
be carried out within a single node, rather than distribute tasks across a num- 
ber of steps [2 ] .  This has influenced the design of the BDWorld architecture 
to focus on achieving resource inter-operability rather than maximising perfor- 
mance. It includes an abstraction layer (the BDWorld-Grid Interface (BGI)), 
which provides a syntactically uniform interface with a uniform resource in- 
vocation mechanism to all BDWorld resources (Figure 3), both databases and 
analytic tools. Resources are wrapped to conform to this interface; wrapped 
resources are then able to interact with various Grid or Grid-like implementa- 
tions via an adaptor specific to the Grid infrastructure currently in use. Other 
BDWorld components are designed to use the same mechanism, and in partic- 
ular Triana has been extended to act as a BGI client. 

engine 
RIeteclata 
repository 

Resources 

Figure 3. BDWorld architecture overview 

To tap into these global repositories on biotic and abiotic information, BD- 
World still needs the knowledge to discover and uses them correctly. As high- 
lighted in the requirements survey above, metadata is crucial to facilitate the 
selection and the location of distributed data resources. To this end, BDWorld 
is building a metadata repository connected to an ontology in order to man- 
age resource heterogeneity. This component is designed to support semantic 
equivalence testing when locating, and in particular, integrating datasets from 
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autonomous data providers which, for example, may employ non-standard 
species names to index their data, or may use an unusual data representation. 

To access and harvest data from the remote data resources, BDWorld re- 
source wrappers must publish metadata on their capabilities and implement 
the BGI. This includes implementing the uniform resource invocation method: 
invokeoperation. This method takes three string parameters: the tar- 
get resource handle; the name of the operation; and the serialized operation- 
specific input wrapped in a standard BDWorld communication object. An im- 
plication of this uniform resource invocation mechanism is that BGI data calls 
are not expressed in terms of standard SQL queries. Another feature is that 
data passing to and from the resources is communicated over the BGI as an 
XML document or a simple string. This permits the transmission of either the 
data or, if the volume is large, the handle for the data. 

There are two main ways we could introduce OGSA-DAI into BDWorld, 
bearing in mind the BGI specifications and communication protocol. One pos- 
sibility is to augment the BGI to make it possible for queries to be included 
in workflows and to be sent directly to OGSA-DAI enabled databases. Dis- 
tributed query processing facilities could be developed to the point where they 
could assist in planning the execution and distribution of data-orientated parts 
of a workflow. However, this would be a very major revision to the BDWorld 
protocols, and does not take account of the fact that many of the resources of 
interest are simply not exposed as databases. The other option is to provide 
facilities within individual wrappers that benefit from OGSA-DAI. We opted 
for the latter approach in building our exemplar. 

Before embarking on our building own custom solution, we first verified if 
it is possible to leverage existing OGSA-DAI based solutions, such as OGSA- 
DQP [I91 and OGSA-WebDB [20]. The latter is developed by the Japan 
AIST to Grid-enable existing web database resources via OGSA-DAI. OGSA- 
WebDB may just be the right tool for BDWorld as it needs to access au- 
tonomous web data sources. However, both DQP and WebDB accept queries 
in formally structured query languages (e.g. SQL, OQL), which we feel would 
not be compatible with the BGI architecture without significant customization. 

4. The BioDA Exemplar 

Figure 4 gives the UML class diagram of our exemplar, which is developed 
with OGSA-DAI R5 OGSI. It has two main components: the custom OGSA- 
DAI activities and the data resource wrappers. The wrappers support custom 
interactions with the data resources being wrapped. These wrappers are simpli- 
fied versions of the existing BDWorld localities data wrappers, and have been 
modified to remove non-essential dependencies on BDWorld components. We 
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Figure 4. UML diagram of the BioDA exemplar 

have implemented three wrappers which we feel are sufficiently representative 
of the remote localities data resources used by BDWorld. 

To make the OGSA-DAI Grid Data Service (GDS) accessible to the cur- 
rent BDWorld Grid implementation, which is based on web services, we have 
configured the exemplar as a web service, using the Axis library 1211 (see 
Figure 5). Note that we have opted to use a single virtual GDS instead of 
deploying separate GDSs for each resource. Our virtual GDS is configured 
for a postgresql database, which is the chosen database platform for BDWorld 
internal data resources. We adopted this strategy for the following reasons. 
Firstly, none of the data source specific capabilities exposed or provided by 
OGSA-DAI activities, eg. data resource mediators, SQLJXML operations, are 
applicable to our remote web data resources. There is no particular advantage 
in maintaining a one-to-one relationship between a GDS and a particular data 
resource. Secondly, there are various overheads associated with starting up an 
OGSI GDS [22-231. We could minimize the overhead cost by sticking to one 
single GDS. Thirdly, this virtual GDS could potentially be extended to handle 
interactions with all BDWorld data resources, including the local postgresql 
resources. 

Apart from delivering existing BDWorld functionalities, our exemplar also 
provides additional features which could be adopted with minor adjustments to 
the BDWorld workflow. In the existing design, the BDWorld workflow issues 
a synchronous data request to each resource wrapper. It also aggregates the 
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Client 
Wapper Module 

Abdract 

Figure 5. Principal software components of the BioDA exemplar 

results and passes them onto the next workflow unit. We feel that we could add 
value by enabling one or more resources to be queried via a single data call to 
OGSA-DAI. We could also minimize unnecessary transfer of data by using a 
separate channel for data delivery, for instance to a compute node within the 
Ganglia Cluster that BDWorld is building. In fact, third party delivery may 
become necessary. If the exemplar is used to query several data resources con- 
currently, the aggregated result set could well exceed the size limit for SOAP. 
OGSA-DAI does not currently support SOAP with attachment. Our exemplar 
returns the gridFTP handles to the cache data files in addition to the actual 
data. Should BDWorld change its data delivery channel from SOAP to third 
party mechanisms, we could simply switch off the codes in our exemplar that 
package the data for SOAP delivery. 

4.1 Usage of the BioDA Exemplar 
Figure 6 shows the usage of the exemplar which goes through the steps as 

follows. 

Step 1: We use an Axis web service (BioDaClient) to expose the OGSA-DAI 
OGSI GDS to non-GT clients. This web service supports the BGI uni- 
form resource invocation mechanism. 

Step 2: The web service contacts the OGSA-DAI Grid Data Service Factory 
and requests a GDS to perform the required database searches (for clar- 
ify, Figure 6 does not show this GDS instantiation process). Our exem- 
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Figure 6. Principal software components of the BioDA exemplar 

plar uses the OGSA-DAI client toolkit API and a custom client activity 
(BDWInputActivity) to generate the Perform Document and to manage 
the interactions with the GDS. It would be possible to bypass the use 
of client activities and submit a Perform Document directly to the GDS. 
Using the client toolkit introduces additional coding on the client side, 
however, the client toolkit provides ready-made components for use as 
basic building blocks to speed up application development, and, impor- 
tantly, the API protects developers from changes in the OGSA-DAI spec- 
ifications. 

Step 3: The GDS processes the Perform request and instantiates the required 
activity. Our exemplar, in fact, uses two separate Perform documents: 
one to orchestrate the asynchronous delivery of input and one to manage 
the database searches. Our BiodaClient uses threads to explicitly or- 
chestrate the execution of these documents. Newer OGSA-DAI releases 
provide client toolkit support for sequence and control flow. This moves 
the complexity of managing the operations from the client to the server, 
and simplifies the process of using OGSA-DAI. 

Step 4: The individual database wrapper searches the remote data resource 
that it represents concurrently, downloads the results (if any) and per- 
forms the required data transformation. 
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Step 5: The individual wrapper writes the formatted localities data to a cache 
file on the local server. 

Step 6: The individual wrapper packages the data into a standard XML docu- 
ment. The activity aggregates the results and returns the XML document 
to the BioDaClient via the web service to the BGI. 

We have tested the exemplar with the BDWorld workflow and successfully 
used it in place of the existing BDWorld database wrappers. The next logical 
step is to amend the workflow manager to generate a single data call for multi- 
ple localities data resources and test the extended capability of the exemplar. 

4.2 OGSA-DAI Usage Experience and Lessons Learnt 
Our experience in implementing the BDWorld use case has demonstrated 

that OGSA-DAI is highly flexible and extensible. Even though web data 
resources are not supported as standard by OGSA-DAI, we have been able 
to leverage the framework to build a workable solution. Compared to 
GT3.2.1, the hosting container, OGSA-DAI 5 is relatively easy to install and 
use. OGSA-DAI offers helphl on-line documentation and there are both 
community-based and official support to ease the learning process. 

In the exemplar, we have layered OGSA-DAI between the data wrappers 
and the BGI. This arrangement provides a degree of location transparency but 
also adds extra levels of indirection. Location transparency facilitates the ex- 
posure of data resources in a global context as data resource product and con- 
nection information is centralized in the OGSA-DAI server. Changes in these 
parameters need only affect the server. In our case, BDWorld is the data con- 
sumer rather than data provider. The lack of location transparency can be seen 
as a limitation of the current prototype; we are also concerned that the extra 
levels of indirection will increase the round-trip data access time as the BGI 
data calls have to be channelled via the web service interface and communi- 
cated through the OGSA-DAI specific layers to the data wrappers. Migrating 
to the new OGSA-DAI WS-I specification will help simplify our exemplar ar- 
chitecture and minimize the levels of indirection. As the current BDWorld 
Grid is implemented on web services, using OGSA-DAI WS-I will allow us to 
expose the OGSA-DAI services directly as web services and remove GT3.2.1 
which serves no other purpose than to provide a hosting framework for the 
OGSA-DAI OGSI services. 

In our exemplar, we are retro-fitting OGSA-DAI to a system with well- 
defined architecture and data handling strategies, which constrained our scope 
of applying OGSA-DAI. For instance, the workflow data handling does not 
provide for interaction between the data resources. Neither do the localities 
data queries require any interaction between data retrieved from the different 
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resources. Our queries simply ask for all localities data associated with a par- 
ticular taxon search string. Consequently, we feel we have not made much use 
of the data integration functionalities offered by OGSA-DAI and OGSA-DQP. 

BDWorld is re-factoring its architecture to improve interoperation with third 
party components. This opens up possibilities for further usage of OGSA-DAI, 
and maybe OGSA-DQP, particularly with respect to minimizing unnecessarily 
data movement and moving computation to the data. These include leverag- 
ing third party data deliveries and the use of complex declarative queries to 
improve the filtering of results at source. 

5. Conclusion 
We have briefly summarised the common data access and integration re- 

quirements raised by the bioinformatics community and reviewed our OGSA- 
DAI exemplar for aggregating locality data for the BDWorld bio-climatic and 
ecological niche use case. We have highlighted other key data integration so- 
lutions based on OGSA-DAI and commented on their suitability for BDWorld. 
We have noted a range of features which, if incorporated into OGSA-DAI, 
would be beneficial to the bioinformatics projects surveyed by BioDA. 

OGSA-DAI is an evolving software and has gone through many iterations 
since its first release just under three years ago. We feel that the lack of take up 
of the earlier versions could be due to a variety of reasons, both technical and 
non-technical. From our dialogues with various e-Science project stakehold- 
ers, it became clear that many e-Science projects such as BDWorld are building 
bioinformatics Grid applications from existing tools and data resources, filling 
in gaps where necessary with new components. In one way, OGSA-DAI could 
potentially facilitate the creation of a loosely coupled data grid. Yet in reality, 
there are many existing considerations which may limit its application. These 
include: the types of data resources typically used in bioinformatics; the nature 
of bioinformatics analyses; the types of infrastructure Grid middleware used; 
OGSA-DAI's previous confinement to the GT platform; OGSA-DAI function- 
alities; a lack of programmatic access to key public data resources. 

The first releases of OGSA-DAI only offered support for database resources. 
Support for semi-structured resources were added later on to meet user de- 
mands. Secondly, many existing analytical tools take in whole data files with- 
out the need to interact with the data or filtering of the file contents. Other Grid 
access mechanism may seem more appropriate for working with file resources 
at the file level. 

In the bioinformatics domain, public data repositories generally do not pro- 
vide generic database access to their data, as is the case for most of the 
BDWorld locality data providers [24-251. Consequently, we could not ap- 
ply OGSA-DAI in a straightforward manner to access these autonomous data 
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providers. Nevertheless, our exemplar illustrates that there are still scenarios 
in which OGSA-DAI may be usefully employed. 

We feel that OGSA-DAI is primarily a framework for enabling a uni- 
form, service-based access to disparate, heterogeneous and distributed data 
resources. It offers a subset of the JDBC functionalities and it exposes data 
resources without hiding their underlying models. Users would still need 
to know the data and how they are represented to use the information cor- 
rectly. As highlighted elsewhere in this paper, OGSA-DAI relies on domain 
knowledge or other third party tools to provide the data integration capabili- 
ties. Projects concerned with data interoperation and requiring fast data access 
simply do not see enough advantages in OGSA-DAI. 

As highlighted in Section 3, the lack of programmatic access to key public 
bioinformatics data repositories is also a factor that potentially limits the appli- 
cation of OGSA-DAI in bioinformatics Grids. Warehousing the databases lo- 
cally is a solution, but this arrangement reduces the advantage of using OGSA- 
DAI as the data is under local administration and can be easily accessed di- 
rectly. To facilitate the development of bioinforrnatics data Grids using com- 
munity standards such as OGSA-DAI, public repositories may consider pro- 
viding an OGSA-DAI interface to support public read access in addition to 
specialised web services. 
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Abstract Fault-tolerance has long been a feature of database systems, with transactions 
supporting the structuring of applications so as to ensure continuation of updat- 
ing applications in spite of machine failures. For read-only queries the perceived 
wisdom has been that support for fault-tolerance is too expensive to be worth- 
while. Distributed query processing (DQP) is coming to be seen as a promis- 
ing way of implementing applications that combine structured data and analysis 
operations in dynamic distributed settings such as computational grids. Accord- 
ingly, a number of protocols have been described that support tolerance to failure 
of intermediate machines, so as to permit continuation from surviving interme- 
diate state. However, a distributed query can have a non-trivial mapping onto 
hardware resources. Because of this it is often possible to choose between a 
number of possible recovery strategies in the event of a failure. The work de- 
scribed here makes an initial investigation in this area in the context of an ex- 
ample query expressed over distributed resources in a Grid and shows that it can 
be worthwhile to make this choice between recovery alternatives dynamically, 
at the point a failure is detected rather than statically beforehand. 

Keywords: distributed query processing, fault-tolerance, parallel query processing, 
rollback-recovery. 
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1. Introduction 

Much work [I 31 has been done to support access to multiple distributed, au- 
tonomous databases, particularly addressing issues relating to heterogeneity, 
consistency and availability. However, systems have tended to gather data to 
a central site for inter-site joins. As described in [19], the emergence of com- 
putational grids [S] provides support and motivation for the evolution of the 
more open query processing espoused in [4] where participants contribute not 
just data but also function and cycle providers. In such an environment, many 
widely distributed and autonomous resources may be utilized in the execution 
of a particular query. Furthermore, it seems likely that the applications will 
often be demanding, so that resource failures may be not only likely but also 
costly. It is then better to tolerate the fault rather than throwing away the work 
done already unless the resources required for completion are not available. 

Previous work [21] describes a basic implementation of support for fault- 
tolerance in a publicly-available distributed query processing system for the 
Grid, OGSA-DQP [I]. In that work, the enhanced system is evaluated through 
measurements of overhead and recovery cost to show that significant gains can 
be made through recovering and continuing after a failure. However, that ear- 
lier work considered only a single recovery scenario, where a failed machine 
is replaced by an equivalent. In continuation, the work reported here demon- 
strates for an example scenario suited to the Grid-based nature of the system 
that there is in general a range of alternative recovery strategies and that it can 
be desirable to make the choice between these alternatives dynamically on the 
occurrence of an actual failure. 

The rest of this paper is structured as follows. Section 2 discusses related 
work. Section 3 describes a mapping of an example query onto distributed 
computational resources and identifies a number of alternative recovery strate- 
gies which can be employed following machine failure during query execu- 
tion. Section 4 reviews the support for fault-tolerance provided in an enhanced 
version of OGSA-DQP, emphasizing features not described in earlier work. 
Section 5 presents initial experimental demonstration of the use of alternate 
recovery strategies in practice. Section 6 concludes. 

2. Related Work 
Transactions [9] are widely used to structure applications which need to en- 

sure consistent access to persistent data, especially when updates to the data 
are required. Typically, operations which update persistent state are recorded 
in a site log so that they can be undone andhedone during recovery from a fail- 
ure to get back to a consistent state. A commit protocol, typically two phase 
commit is employed to ensure updates to distributed databases are either all 
committed or all aborted. Checkpointing database state in such settings re- 
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duces the cost of recovery since log entries prior to the checkpoint do not need 
to be redone. Such recovery techniques aim to ensure the persistent databases 
can be brought to a consistent state. The application issuing updates can be 
coded to retry any aborted transaction. Otherwise, or if its own internal state 
is lost, the application must restart. This is undesirable if the application is 
expensive. 

Workflows [lo] for instance can be structured using internal transactions 
and maintaining intermediate state in a database to ensure that work already 
committed need not be redone during recovery. This state can then be repli- 
cated to achieve high availability [12]. An individual stateful application which 
might be called by a workflow can be recovered by logging interactions with 
the application to support re-creation of the internal application's state after a 
failure [3]. 

Like workflow, distributed queries are evaluated through a directed graph 
structure, but while workflow execution is likely to be event driven, queries 
typically follow a pipelined data flow pattern. This pipelined nature, the typi- 
cally wide area distribution and the high level expression of queries, has moti- 
vated the exploitation of recovery protocols built into the query algebra rather 
than at a lower, system, level. Example approaches include: [ la,  111 imple- 
mented in stream processing [2]; [14] targetted at data warehouse loading; 
and [21] implemented in the Grid-based distributed query processing system 
OGSA-DQP. While it is important first to implement a protocol that can sup- 
port some degree of fault-tolerance in such pipelined computations, it is also 
important to examine the use of that protocol in practice. The contribution of 
this paper is to consider practical recovery strategies in an example scenario. 
It transpires that even in this simple case, there are typically multiple possi- 
ble strategies and that it can be beneficial to choose between the alternatives 
dynamically at run-time. 

Distributed query processing is being increasingly seen as an important tool 
for expressing complex distributed Grid-based computations in a conveniently 
high level way. For instance, SkyQuery [15] supports DQP over Grid resources 
with Web Services (WSs) being represented as typed user defined functions. 
GridDB-lite [16] supports access of large scale scientific data from large paral- 
lel repositories via SQL queries. In the context of Grid oriented query process- 
ing systems, Polar* [19] and OGSA-DQP [I] are distinguished in supporting 
placement of parts of the query plan on machines which don't hold data, rather 
like the compute servers of ObjectGlobe [4], and then using established paral- 
lel query processing techniques to seek a benefit through data parallelism. In 
Figure 1 for instance, a simple query which accesses some expensive opera- 
tion "F" is evaluated through exploitation of three copies of the WS hosting 
that operation, in order to reduce the response time. Work in Polar* demon- 
strated that speedup of an example query in the field of bioinformatics access- 
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Figure I .  An example query initiated at a user's workstation, accessing data from a remote 
machine and using three copies of a web service hosting an expensive operation "F" to exploit 
data parallelism. 

ing an expensive analysis function could be beneficial even in a heterogeneous 
environment [20]. The work described here focuses on the requirements for 
fault-tolerance arising in such query evaluations. Equally however, a query 
requiring a large join might profit through parallelization over dynamically ac- 
quired resources by being able to use a single phase algorithm, e.g. [22]. 

3. Recovery Options 
Figure 2 shows how an example query might be mapped onto distributed 

resources by the DQP compiler. The query, shown in Figure 2(a) applies an 
expensive function call which is hosted by a publicly available WS to data ac- 
cessed from a remote source. The compiler has generated from the query text 
a parallel plan shown in Figure 2(b) which implements the query using three 
partitions, PO, PI, P2. It happens that at the time the query is executed, there 
are two copies of the WS instantiated on machines which are available to the 
DQP instance. The compiler has chosen to employ both these instances in its 
execution plan. Thus, query execution shown in Figure 2(c), is distributed be- 
tween the user's machine MO, the machine hosting the data source MI, and the 
two machines M2, M3 hosting the WS which exports the analysis call. During 
query execution tuples are retrieved from the data source on MI and divided 
between M2 and M3. The result tuples on M2,M3 containing the outputs of 
calls to analysis are forwarded to MO where the whole result is returned to the 
user. 

The component of the plan allocated to a specific machine is an instance 
of a partition defined in the parallel plan. The single partition containing the 
operation call has been replicated on two different machines. The tuples from 
upstream are divided between the replica partitions to achieve a speedup. In 
general, most partitions in a parallel plan can be replicated in this way; the 
root partition is an exception. In the following discussion, a horizontal slice of 
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select analysis(va1ue) 
from data; 

j h tablescan 
PI: 

(a) Query text. (b) Parallel plan. 

- 
(c) Mapped execution plan. 

Figure 2. Mapping an example qucry. 

a query plan formed by such replication is referred to as a replica set. Every 
partition of the parallel plan can be represented as a replica set, even if the 
cardinality of that replica set is restricted to 1. Thus, the example plan has 
three replica sets, of which two have cardinality 1 and one has cardinality 2. 

During the course of the query execution, any of the machines participating 
could fail. In a failure, a machine might in practice disappear for good as far 
as the query execution is concerned; i.e. if the query completes before the 
machine becomes available. Alternatively, the machine might return to service 
swiftly, e.g. after a reboot. For the purpose of this work, responses addressing 
just a single machine failure at a time are addressed. A set of basic operations 
that can be used to respond to such single machine failures is described below. 

restart(query, from) The simplest recovery strategy is to restart the query; 
this option can clearly be taken in response to failure of any machine. 
The restart could be from one of various stages. Thus, a second pa- 
rameter is included to represent (in some way) the choice of where to 
restart from. For instance, starting from the compiled execution plan, 
avoids repeating the compilation stage and might be appropriate if for 
instance a required data source has failed transiently, i.e. has failed but 
quickly been restored. However, starting from scratch with the original 
query text offers greatest flexibility and might allow a query to be rerun 
correctly if a required resource has failed persistently. If the query plan 
has a point at which intermediate results are fully materialized, it is also 
possible to restart from that point, thereby saving the cost of repeating 
all work leading up to that point. 

reduce(rep1ica-set) Reduce is applied to a replica set to reduce its degree of 
parallelization by one. Where the failed machine is one of a set over 
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which a partition of the parallel plan has been parallelized, reduce can 
effect recovery by re-parallelizing the partition over the same set of ma- 
chines minus the one which had failed. 

replace(partiti0n) Replace, which is applied to a single instance of a parti- 
tion, is least intrusive to other parts of the query plan. If a single ma- 
chine fails the lost partition instance is recreated on a spare machine and 
the only impact on surviving machines is the need for reconnection of 
communications with neighbours. 

An executing query encapsulates distributed intermediate state, e.g. buffers, 
hash tables etc. If such state is subject to losses or duplications due to ac- 
tions of failure recovery, the answer returned will be incorrect. If a machine 
fails, whatever intermediate state was present on that machine just prior to the 
failure cannot be recovered from there. In a particular query, there may be a 
natural global materialization point upstream of where the failure occurs and 
then restart from that point is possible. By contrast, reduce and replace are 
both local operations which depend for their implementation on the services of 
an underlying recovery protocol. A recovery protocol maintains the capability 
for such transient state which is lost in a failure to be recovered after the fail- 
ure. It achieves this through some form of replication. A common approach 
is to preserve remotely a snapshot of process state, but an alternative suited to 
query processing is to preserve copies of tuples in a machine while those tuples 
are sent for processing downstream [21]. 

In addition to the nature of the query plan and the point at which a failure 
occurs, recovery can also be constrained by the nature of the machines that are 
available. For instance, if the partition running on a failed machine contained 
a memory based join, a single replacement machine must have capacity to ac- 
commodate that join. In extension to the operations described above, it would 
be feasible to replace the single machine by two or more machines in parallel. 
If the failed machine was part of a replica-set running a join in parallel, then 
reduce is only possible if the surviving machines can accommodate the reparti- 
tioned join. If the failed machine was running an operation call in a WS hosted 
there, a replacement must host a similar WS. 

4. Implementation 

4.1 OGSA-DQP 
OGSA-DQP [I] is a publicly available infrastructure which supports user 

submission of distributed queries over data and analysis resources, the for- 
mer exposed as Grid Data Services (GDSs) via the OGSA-DAI infrastruc- 
ture [17] and the latter as WSs. The infrastructure implements two Grid Ser- 
vices (GSs) [6], as follows. 
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A GDQS (Grid Distributed Query Service) maintains the metadata cat- 
alogue describing the available computational resources and databases. 
A GDQS accepts user queries expressed in OQL over its global schema. 
It initiates compilation and optimization of queries to yield execution 
plans. 

A GQES (Grid Query Evaluation Service) is an evaluation engine that 
is capable of running a subplan of a distributed query plan generated 
by a GDQS. An instance of this service is created on each machine the 
optimizer decides should participate in the distributed query execution. 
Distributed query execution is therefore performed by a set of GQESs 
that communicate by exchanging tuples. The use of multiple GQESs 
allows exploitation of parallelism (e.g. parallelizing joins over a set of 
GQESs) and also fault-tolerance, as described in this work. The service 
comprises an execution engine which realizes the physical algebra, in 
the iterator style [a] and includes support for two key operations. 

- perform accepts a query subplan, specified as an XML document, 
and instantiates that plan within the query engine. 

- putData accepts a buffer full of tuples from another GQES which 
are intended for further processing in this GQES. This interface is 
employed within the exchange operator, after [7] ,  to support the 
movement of tuples between GQESs. 

4.2 Recoverable OGSA-DQP 
In order to evaluate support for fault-tolerance in distributed query process- 

ing, an enhanced version of OGSA-DQP, is being developed. Many details of 
the enhancement are described in the earlier work [2 I]. This section gives only 
a brief summary and highlights differences. Figure 3 illustrates the structure 
of OGSA-DQP-REC. 

Client 

Z 
query subplans plan + meradata 

lkecoveiy Prcitocol 

Figure 3. Components of OGSA-DQP-REC. 
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The client provides the means by which the user can specify a Quality Of 
Service (QOS) which can be translated into a requirement for fault-tolerance 
provision. Such a specification might for instance require tolerance to one 
machine failure during a query execution. 

The coordinator takes a user query, generates a plan, and instantiates the 
required query evaluation environment. Based on the user's specification of 
the quality of service, the coordinator has to acquire the resources necessary 
to support the required provision of fault-tolerance. The optimizer has then 
to take account of the fault-tolerance requirements when generating a query 
plan, for instance when choosing the number of data source replicas and/or the 
scheduling of operators. 

An enhanced algebra implements a recovery protocol which backs up tuples 
upstream till they are acknowledged as 'used' from downstream. 

The Fault Detector (FD) monitors the running system so that it can notify 
the Fault Handler (FH) of failures. The FD aims; to impose low overhead; 
to give each monitored machine the best chance it can to indicate its correct 
running within a user-defined constraint; and yet to report any monitored ma- 
chine which fails to indicate its correct running as fast as possible. To this end, 
the FD regards a sufficiently slow response from a cheap "heartbeat" call to 
any machine as grounds for deeming that machine as failed. The FD contains 
an array of counters, with one corresponding to each monitored machine, and 
each initialized to zero. At a regular interval, a thread (probe) per monitored 
machine makes a synchronous call on a null operation exported by lower level 
software on that machine, and decrements the corresponding counter by one on 
completion of each such call. At a defined interval, a single threadprobe-set in- 
crements and tests the value of each of the counters. If any machine has failed, 
or is running slowly enough, then probe-set finds the value of the correspond- 
ing counter to exceed the maximum allowed value, whereupon the machine is 
reported as failed. If this maximum value is f ,  and bothprobe andprobe-set 
employ the same interval I, a failure should be detected in approximately f x I 
seconds. 

The FH acts upon notifications from the FD, deciding upon and effecting 
appropriate changes to the running system to exclude the reported machine, 
for instance substituting a suitable spare machine for one which has failed, 
or perhaps aborting the query and causing a suitable error indication to be 
returned to the user if there is no available resource. To perform this task, 
the FH uses a description of the plan allocated to the evaluators and metadata 
describing both the fault-tolerance provision and resources which are or may 
become available in order to support that fault-tolerance provision. The FH 
is divided into two parts. A Global Fault Handler (GFH) is responsible for 
deciding on the overall strategy to pursue for a distributed computation in the 
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event of a failure notification and instructing relevant Local Fault Handlers 
(LFH). LFHs are responsible for performing reconfiguration operations locally. 

In this work, two of the operations, reduce and replace, described in Sec- 
tion 3 are implemented in the FH. The operations are distributed between the 
GFH and the LFHs; the central GFH allowing coordination of what are in- 
evitably distributed operations. The implementations are illustrated in Fig- 
ure 4. The high level operation to redistribute retrospectively, employed in 

disable neighbours I disable neighbours 
redistribute retrospectively 2 install neweval 
reconnect survivors 3 disconnect oldeval 
enable neigbours 4 connect neweval 

5 enable neighbours 

(a)  reduce. (b) replace. 

Figure 4. Implementation of recovery operations. 

reduce, is responsible for reconciling neighbours up and downstream before 
changing the distribution of tuples specified in the upstream neighbours and 
also for ensuring that transient state distributed across the replica set is cor- 
rectly distributed across the reduced replica set. In current OGSA-DQP-REC, 
this can be achieved by killing, recreating and reinstalling partitions to the 
surviving replicas. As part of normal restart processing, tuples backed up in 
the upstream neighbours are then replayed, but using the revised distribution 
policy. From an implementation point of view, this approach is clean and sim- 
ple. It would be possible to avoid the overhead of a GS instance creation by 
implementing a suitable restart operation within the evaluator. 

5. Experimental Results 
The experiments are performed using OGSA-DQP-REC over a local area 

network comprising a cluster of 860MHz machines having 5 12MB main mem- 
ory each, interconnected via a lOOMbps fast ethernet switch and a separate 



60 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS 

client 3GHz machine on a different subnet having IGB main memory. An 
example dataset contains a single table with 10000 tuples, each containing a 
string attribute which serves as parameter to the analysis call. The latter is 
implemented in a web service which is hosted on two of the machines in the 
cluster. The query can be seen as a simplification of the bio-informatics ex- 
ample discussed in [19]. In these experiments, queries are submitted to the 
OGSA-DQP-REC system via a shell script. The OGSA-DQP-REC system 
compiles and runs a query using machines in the cluster and writes query re- 
sults to a file on the client machine. The compiler maps the query onto the data 
source machine and either one or two of the machines hosting the web service, 
depending on whether reduce or replace is being tested. The execution time, 
measured from submission to completion of a query is saved to a database by 
the controlling shell script, which also injects faults where required simply by 
making an ssh call to the chosen machine in the cluster and there calling killall 
-9 java which has the effect of aborting the tomcat web server there. 

Figure 5 shows the measured total elapsed time for query completion in 
both failure-free executions and executions where a fault is injected at some 
interval (Delay time) after the start of query execution and the fault-tolerant 
system recovers using either replace or reduce. In (FT-replace), the operation 

1 - NFT - 

0 200 400 600 800 1000 1200 1400 
Delay time (seconds) 

Figure 5. Measured results. 

call is initially scheduled to just one of the machines hosting the web service, 
thereby leaving one spare and only the replace option is enabled in FH. In 
(FT-reduce) the operation call is initially scheduled to both these machines 
and just the reduce option is enabled in FH. The query performance is mea- 
sured with the fault injection disabled, but using either one (1-NFT) or both 
(2-NFT) machines hosting copies of the web service and, in the former case, 
also with fault-tolerance support (i.e. recovery protocol and failure detector) 
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enabled (1-NFT). These failure free executions are point measurements, at 
Delay time=oo, so for convenience horizontal lines are drawn at those values. 

The failure free execution time is about 1200 and 600 seconds with par- 
allelism of 1 and 2 respectively. These values are evident directly, but can 
also be seen by observing that when a fault is injected after query comple- 
tion, the execution is failure free. The results show that the overhead of the 
fault-tolerance support is low (i.e. 1-NFT vs 1-FT) and that for this expen- 
sive function, the benefit obtainable through parallelization is very good. The 
results also show the usefulness of the reduce operation. In this example, if 
failure occurs very near the start of the query execution, there is little to choose 
between the two approaches, but when the failure occurs later during query ex- 
ecution, the overall response is improved through both machines having been 
actively participating in the query execution up to the time of the failure. 

The experiments then suggest the best approach is always to use all avail- 
able machines and then apply reduce to recover from each failure that occurs, 
up to the point that the last of the replicas has failed and replace (using a dy- 
namically acquired machine) or restart is enforced. However, it is not always 
beneficial to use all available machines, so there may be some spare. In that 
case replace is preferable as execution continues with the original number of 
machines rather than dropping by one. In general, reduce may not always be 
applicable when there is more than one replica, for instance where the reduced 
replica set has insufficient memory to support a join which was parallelized 
over the set of machines. In response to failure of a machine participating in a 
complex parallel plan, it is possible to combine reduce of one replica set with 
replace of the original failed machine, for instance if the replica set contain- 
ing the original failed machine doesn't support any reduction in parallelism. 
Even though a machine crash is in a sense a straight forward event, distributed 
queries can map onto distributed machines in complex ways so that responding 
to a machine crash is likely to entail some measure of choice between alterna- 
tive options. 

6. Conclusions 
Distributed query processing is coming to be seen as a way of combining 

computational and database resources through a high level level expression that 
is convenient to the user. However, such a trend suggests that while individual 
queries will become more highly distributed and more demanding, individual 
machine failures will be more likely. In this setting it becomes preferable to 
recover from such an individual failure without having to start the interrupted 
query from scratch. This initial investigation of an example query suggests that 
there can be multiple recovery options available to a fault-tolerant DQP. While 
the set of basic operations identified here is not definitive, it appears unlikely 
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that a single recovery operation would prove universally optimal. Instead it 
seems that one or more of a generalized set of basic operations might be ap- 
plied dynamically to manipulate a running query plan so as to recover from a 
particular fault. 
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Abstract Scalable storage systems are expected to scale to large numbers of physical stor- 
age devices and to service diverse applications without incuring high manage- 
ment costs. New storage virtualization architectures and techniques that are cur- 
rently being proposed, aim at addressing these needs by providing the ability 
to configure storage systems to meet resource constraints and application re- 
quirements. However, this flexibility leads to a large number of options when 
configuring storage systems either statically or dynamically. 

In this work we examine how this process can be automated. We present 
Conductor, a rule-based production system that is able to evaluate alternatives 
and minimize system cost, based on certain criteria. Conductor starts from a set 
of system resources and a set of application requirements and proposes specific 
system configurations that meet application requirements while minimizing re- 
source costs. It captures human expertise in the form of rules to generate and 
evaluate configuration alternatives. In this work we focus on static configura- 
tion issues and examine various approaches for reducing complexity within a 
large configuration space. Our techniques manage to satisfy practical time and 
resource constraints. 
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1. Introduction 

As the amount of storage required increases, scalable storage systems pro- 
vide a means of consolidating all storage in a single system and increasing 
storage efficiency (Figure 1). For this reason, storage system architectures are 
undergoing a transition from directly- to network-attached. This new archi- 
tecture offers potential for flexible configuration of storage systems to better 
match application needs and thus, reduce system cost and improve efficiency. 
This is an important concern because distinct application domains have very 
diverse storage requirements; Systems designed for the needs of scientific com- 
putations, data mining, e-mail serving, e-commerce, search engines, operating 
system ( 0 s )  image serving or data archival impose different tradeoffs in terms 
of dimensions such as speed, reliability, capacity, high-availability, security, 
data sharing, and consistency. 

Thus, storage consolidation leads to increased requirements for "flexibility" 
that will be able to serve multiple applications and their diverse needs. This 
"flexibility" refers to both storage management and application access issues 
and is usually provided through "virtualization" techniques: Administrators 
and applications see various types of virtual volumes that are mapped to physi- 
cal devices but offer higher-level semantics through virtualization mechanisms. 

Modern storage virtualization techniques aim at providing flexibility in con- 
figuring and accessing physical system resources. Storage virtualization may 
occur either at the filesystem or at the block level. Violin [5] is a kernel-level 
framework for building and combining virtualization functions at the block 
level. Violin targets commodity storage nodes and replaces the current block- 
level 110 stack with an improved 110 hierarchy that allows for (i) easy extension 
of the storage hierarchy with new mechanisms and (ii) flexible combining of 
these mechanisms to create modular hierarchies with rich semantics. 

Figure I(b) shows a virtual hierarchy that creates a virtual disk by aggre- 
gating three virtual devices: an aggregation of two encrypted disk, a pair of 
striped disks that is encrypted and an encrypted disk. Scenarios of more ad- 
vanced virtualization semantics are discussed in [6]. 

Virtualization mechanisms, such as Violin, provide the means required for 
creating flexible configurations and exporting an abstract view of the actual 
storage resources to satisfy application requirements. However, such an ap- 
proach results in a large number of alternatives that can match the application 
requirements. For instance, a certain capacity can be provided either with a 
single large disk or by aggregating many smaller disks; A required level of 
bandwidth may be reached either by a high-performance disk or by striping 
several lower speed disks; Encryption can be introduced at several levels of 
the hierarchy: at the topmost virtual device it could represent a centralized 
service, whereas at the level of physical disks it can be realized as many par- 
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Figure I .  (a) Generic networked storage organization (left) and (b) example virtual hierarchy. 
('+' represents an aggregation, '=' a striping, 'e' an encryption virtual device.) (right) 

allel encryption services. Evaluating these alternatives usually requires human 
intervention that results in increased management costs. Beyond a certain com- 
plexity however, humans cannot survey and manage virtualization hierarchies. 

In this work we present Conductor that is able to automatically evaluate con- 
figuration alternatives and suggest optimal solutions based on certain criteria. 
Conductor captures human expertise in the form of rules. Based on the rules, 
it builds various alternative configurations and makes suggestions about opti- 
mal ones. Configuration is essentially an exploration of a multi-dimensional 
search space and it is inherently of exponential complexity. The focus of this 
work is how the complexity of the search can be reduced so that it has accept- 
able running times for practical cases while the quality of the solution is not 
decreased. 

We find that exhaustive search, i.e. trying all possible configurations is not 
feasible even for toy examples. Random reduction of the search space is a 
potential alternative but may exclude some of the optimal solutions. Heuristic 
search applies some additional information about the search space. We in- 
vestigate two methods: (a) Zoned search, which enables or prohibits certain 
actions according to specific zones within the configuration space. (b) Clus- 
tered search, which creates clusters of similar devices and uses these clusters 
as the basis of the configuration space search. Both of these methods are able 
to deliver optimal solutions, have practically acceptable complexity and, in 
addition, can be combined. 

The rest of this paper is organized as follows. Next section introduces re- 
lated work. Section 2 presents an overview of Conductor. Section 4 discusses 
quality and complexity issues for various approaches to evaluating alternative 
system configurations. Section 5 presents our results and analysis of the over- 
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heads associated with each approach we examine. Finally, we draw our con- 
clusions in Section 7. 

2. Related work 
Storage management involves many problems that are hard to formalize, in- 

volve multi-dimensional optimizations, exponential search, or ambiguous de- 
cisions. Even if there are explicit algorithms for certain problems, they quite 
often belong to the NP-hard class. Recent work tries to exploit "intelligent", 
heuristic-based, approaches for tackling some of these problems. 

Polus [I  I]  aims at mapping high level QoS goals to low level storage actions 
by introducing learning and reasoning capabilities. The system starts with a 
basic knowledge of a system administrator expressed as "rules of thumb" and 
it can establish quantitative relationships between actions taken and their ob- 
served effects to performance by monitoring and learning. To eliminate per- 
formance problems, the system finds an appropriate set of actions by backward 
reasoning in the generated knowledge base. 

Ergastulum [2] is aimed at supporting the configuration of storage systems. 
It essentially helps with reducing the search complexity of possible design de- 
cisions by utilizing a best-fit bin packaging heuristics with randomization and 
backtracking. It takes into consideration workload characteristics, device spec- 
ifications, performance models and constraints, and provides a near-optimal 
solution in practically acceptable time. 

The work introduced in [3] assists in selecting the right data-redundancy 
scheme for disk arrays. It is a derivative of Ergastulum and explores and eval- 
uates four methods for a specific problem: rule-based tagger, model-based tag- 
ger, and partially and fully-adaptive solvers. 

A novel approach presented in [lo] tries to predict the effect of certain ac- 
tions and helps with making decisions at data distibution (encoding and place- 
ment). It has some similarities with the learning abilities of Polus. It estab- 
lishes a set of What ... $.. statements where the hypothetical effect (what part) 
of a certain circumstance (if part) is stored. These relations are obtained by 
statistical, analytical or simulation methods. The accuracy of predictions were 
shown to be practically acceptable. 

A main effort in both our as well as previous research is to capture aspects of 
human expertise. However, previous research has focused on different aspects 
and has applied different techniques. In our work we examine configuration of 
the virtualization hierarchy and consider disks themselves as black boxes, i.e. 
exclude low level physical aspects in the investigation. Polus mainly operates 
at the physical disk level and does not consider structural issues. Ergastulum 
and its derivative is similar to our work in a sense that it is also aimed at re- 
ducing the complexity of configuration. However, it supports initial system de- 
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signs only and strongly relies on assumptions of the workload and performance 
models. Our intention is to extend Conductor so that it can manage dynamic 
reconfigurations therefore, initial configuration is carried out with limited as- 
sumptions about the workload and estimated performance figures. Also, the 
search methods used in each case are different: Ergastulum uses backtracking, 
whereas we apply forward chaining. At the current phase of work we do not 
apply any learning or predictive abilities nevertheless, these may be considered 
in the future. 

3. System Overview 
The aim of Conductor is to increase the degree of autonomy in storage 

systems by creating and maintaining virtual storage hierarchies (customized 
storage services) based on user and application requirements, without the in- 
tervention of system administrators. Thus, Conductor partly substitutes human 
system administrators and overtakes some of their tasks during the life-cycle of 
a storage system: (i) Initially configure new virtual hierarchies based on a pre- 
scribed specification. (ii) Monitor hierarchies to ensure they satisfy at runtime 
the prescribed specification. (iii) Detect where problems occur in hierarchies 
that deviate from specifications. (iv) Modify or rebuild, partly or entirely, such 
hierarchies. 

In large-scale storage systems today, such tasks are performed by experi- 
enced personnel and thus, rely heavily on human expertise. As storage systems 
grow in size and their architectures leverage commodity components, it is pro- 
jected [ I ]  that the cost of maintaining them may dominate and eventually limit 
their scalability. 

In this section we present the overall concept of Conductor. Although Con- 
ductor aims at addressing all issues above, this paper focuses on the first step, 
the creation virtual storage hierarchies based on prescribed specifications. This 
is the static part of the above tasks. The rest of the tasks constitute dynamic 
runtime management steps and are left for future work. 

3.1 Conductor architecture 
Conductor is built in the context of Violin [ 5 ] ,  a storage virtualization frame- 

work. Our approach is to augment Violin with a rule-based, forward chaining 
production system for the following reasons: (i) Rule-based systems offer a 
straightforward way to express "common sense" and "rules of thumb" that are 
based on human expertise. These rules are declarative and specify the knowl- 
edge not the procedure to solve a problem. (ii) Data are represented as facts, 
i.e. abstract statements. This uniformity makes it possible to represent vir- 
tually all sort of information. (iii) Production systems apply highly efficient 
pattern matching mechanisms to select appropriate rules. Therefore, they are 
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Figure 2. Conductor architecture. 

able to capture information hidden in unrelated, unstructured, heterogeneous 
data by searching for certain patterns. 

Figure 2 depicts the conceptual architecture of Conductor. Conductor com- 
municates with the storage system (Violin) at two well defined points: it re- 
ceives monitoring data from the storage system and sends configuration com- 
mands to it. Monitoring data are transferred between Violin and Conductor 
via a simple interface, such as the /proc filesystem in Linux. Commands 
that dictate configuration changes to Violin can also be sent through a simi- 
lar interface, such as ioct 1 calls in Linux. All information is represented in 
Conductor as facts and rules: 

Facts represent factual information about the system, that may be (i) static, 
which is basic information about system components, e.g. a directory of disks, 
network links, host nodes and their characteristics; (ii) dynamic, which is mea- 
sured during system operation, e.g. throughput obtained from each virtual 
device, number of requests traversing a path; (iii) inferred, which is derived by 
Conductor during its working cycle. 

Rules represent empirical knowledge about the system. They express ac- 
tions that must be performed in a certain situation [4]. Such situations are de- 
scribed by the conditions of the rule that must be satisfied to enable the actions. 
Conditions involve the existence or non-existence of facts or certain patterns 
that facts must satisfy. From all applicable rules, i.e. where conditions are true, 
one is chosen and its actions are executed. Rules in Conductor essentially try 
to capture "rules of thumb" a human operator would perform in each case. 

Conductor is implemented in CLIPS [4,8], a production system framework, 
that realizes the production cycle [7] as depicted in Figure 2 : (i) Update factual 
information in the knowledge base. Facts activate rules as they are matched 
with the conditions of the rule. (ii) From the potentially many activated rules 
one is selected according to the conflict resolution strategy of the production 
system. (iii) As the selected rule fires, it may generate new (inferred) facts and 
update the knowledge base. 

This simple cycle continues as long as there are activated rules. Note, that in 
each production cycle rules may be activated or deactivated and the execution 
order is governed by the conflict resolution strategy. 
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Conductor operates in two possible modes: (i) Initial configuration mode. 
This mode is used to configure virtual devices based on user requests and static 
facts. (ii) Diagnosis and dynamic reconfiguration mode, where it triggers di- 
agnostic procedures and corrective actions. This work focuses on the initial 
configuration mode, which we describe next in detail. 

4. Initial Configuration Mode 
Initial configuration is a "bootstrapping" process that creates a new virtual 

hierarchy (target device) of devices from scratch according to a set of user and 
application requirements. Some of these requirements are related to the func- 
tionality of the target storage device and have static characteristics, whereas 
other requirements capture performance aspects and are dynamic. While static 
requirements can be guaranteed for the lifetime of the target device, the exact 
performance of a target device is hard to predict and guarantee. Storage per- 
formance is related to workload characteristics, such as access patterns that are 
typically unknown, difficult to predict, and dynamic in nature. 

Rules used in the initial configuration mode satisfy all static requirements, 
whereas they only "try" to satisfy dynamic (performance) requirements based 
on estimated values for system components. One possible approach to improve 
this is to dynamically update estimated values with actual measured data as 
soon as they become available and trigger a full system reconfiguration, based 
on these measured values. 

Conductor needs to explore a large configuration space with multiple di- 
mensions. Each dimension corresponds to a property of the disks, e.g. capac- 
ity, bandwidth, level of redundancy. Some of these properties are continuous, 
whereas others are discrete. Any device is represented in this space by a vec- 
tor: Each request for a target device is translated to a vector with components 
derived either from the user request or from desired system characteristics. 
Physical disks are represented as vectors with estimated values for their perfor- 
mance characteristics. Virtual devices that are created from combining other 
(virtual or physical) devices are represented as vectors with components de- 
rived by production rules. These rules express relationships and constraints 
between dimensions of device properties and guide configuration steps. Thus, 
we can define the problem of configuration as a search procedure in this multi- 
dimensional space that tries to produce a given target vector, the user request, 
using only appropriate combinations and modifications (rules) of initial vec- 
tors (devices). A solution to the problem consists of the set of initial vectors 
and the set of rules applied to transform them into the target vector. 

Figure 3 shows an example with a configuration space of three dimensions. 
Initially, there are two disks d l  and d2 of a certain capacity and bandwidth and 
none of them are encrypted. If the rule of striping is activated by d l  and d z  
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Figure 3. Configuration as exploration of the search space and the generated disks. (Empty 
circles are physical disks, = represents a striping, e represents an encryption virtual disk.) 

and fires, it yields d3 that has the added capacity of dl and d2 and a bandwidth 
increased by factor a ;  for instance, assuming a linear access, a is around 2. 
When the rule of encryption is activated by ds and fires, it yields d6 with the 
same capacity and bandwidth but with the added service of encryption. Rules 
are activated by disks and combinations of disks in an unspecified order if 
certain conditions are met. Thus, the rule of encryption can be activated by dl 
and d2 ,  yielding d4 and d5 that activate the striping rule yielding d7 with the 
same characteristics as d6. If any of these disks fall into a defined range of the 
required parameters then the search for a given configuration is successful. 

Note however, that this example is simplified. There can be significantly 
more rules active simultaneously, e.g. aggregation, 3-, 4-, 5-way striping, mir- 
roring, partitioning which combined would generate a huge disk population in 
the search space. Furthermore, only a few dimensions are taken into consid- 
eration in this example. For instance, encryption does not change capacity or 
bandwidth but it may increase response time. If mapping is also taken into 
consideration as a further dimension, d6 and d7 do not necessarily coincide. 
d7 consists of two encrypted virtual disks that may work in parallel - depend- 
ing on mapping options - giving better performance than the single encryption 
layer of d6.  

The search method may generate large numbers of possible disk configura- 
tions within an acceptable distance to the requested specification vector but one 
of them must be chosen, eventually. The specification can have more compo- 
nents than the required parameters. These additional components are related to 
the management of the device and may involve dollar cost, resource utilization, 
structural complexity, power consumption or other aspects; some are defined 
by the user, some others by the service provider. The specification vector may 
also give weights and annotations how these metrics can be evaluated. Based 
on these metrics a function is calculated that is a linear combination of certain 
scores how much the given component fits the specified one. For instance, the 
resulted capacity should be as close to the specified one as possible whereas 
the power consumption should be as little as possible furthermore, there are 
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components, like encryption that requires an exact match. With appropriate 
weights the importance of these aspects can be tuned from don't care to ut- 
termost. The calculated function is used to select the best vector among the 
resulted ones. Intuitively, we may say that we choose the closest vector to the 
specified one but the calculated function is not a distance metrics in a strict 
sense, hence we call it "cost". Smaller cost means better solution. In current 
experiments we use a simple dollar cost metrics; certain cost functions will be 
defined based on practical experience. 

It is important to note that the search is non-monotonous: Virtual devices 
closer to the required specification vector are not necessarily better or more 
usehl in generating the final solution. For instance, a given bandwidth can po- 
tentially be provided by two disks of 60% of the requested bandwidth whereas 
the same could not be fulfilled efficiently by two disks that have 90% of the 
requested bandwidth. 

Also, the search is non-exact. Its aim is to find a target device with charac- 
teristics as close to the user requirements as possible. However, in most cases, 
the resulting device will not be an exact match, especially in cases where dy- 
namic characteristics are considered. 

4.1 Rules 
Configuration is driven by rules that specify three aspects for creating a new 

virtual device from existing ones: (a) What properties the existing devices need 
to have, (b) Specifically how they should be combined, and (c) What are the 
projected property values for the new device. 

There are different rules for various combinations and modifications of 
disks, e.g. aggregation, (n-way) striping, mirroring, partitioning, encryption. 
They incorporate conditions (disks eligible as targets of the operation), con- 
straints (under what circumstances the operation is possible) and effects (new 
or modified parameters) of the given operation. For instance, the rule of strip- 
ing picks two disks and check if (i) their capacities are the same, (ii) their 
bandwidths are similar, (iii) their latencies are below a certain limit and (iv) 
either both of them or none of them are encrypted. If these conditions hold, 
then striping is possible and results in a new disk that has doubled capacity, in- 
creased bandwidth, the same latency and encryption as the constituting disks. 

As rules fire, they create new devices in the search space. These may fire 
other rules that, in turn, create new devices. This could continue infinitely 
therefore, rules incorporate conditions that limit the search, e.g. the height of 
the hierarchy or the distance from the requirements. When there are no more 
activated rules, the solutions are checked. If there are disks within an accept- 
able distance from the requested specification vector, one of them is chosen 
based on the cost function. Otherwise, some limiting conditions are changed 
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Figure 4. (a) Valid and invalid zones in the search space (left). (b) Operations are enabled 
one at a time so that zone A can be reached in the fewest steps (right). 

that activate rules, e.g. one level higher hierarchy is allowed, and the search 
continues. It stops finally if either a solution is found or there are no solutions 
in a given number of iterations. To control the complexity of the search process 
we use certain heuristics. Next these are examined in details. 

Exhaustive search. With exhaustive search all possible vectors are gener- 
ated according to the rules. Some of these vectors will lead to the requested 
specification vector, whereas others will not. This approach will eventually 
generate the target device that is the closest to the requested specification at 
the least possible cost. However, this method has exponential complexity and 
is not realistic in practice. 

A simple approach to reduce the complexity of the exhaustive search is to 
randomly omit generated vectors at the search. In our evaluation, we examine 
dropping one every 16, 8 ,4 ,  and 2 generated devices randomly. Although this 
simple approach significantly reduces the search space, it cannot guarantee that 
the generated disk will be acceptably close to the requirements and, even in this 
case, that it is the smallest possible cost. 

Zoned search. Zoned search is heuristic, i.e. uses some additional infonna- 
tion in order to omit irrelevant solutions and thus, decrease the search space. 
As rules define the projected properties, some disks can be combined so that 
they lead to the required solutions, whereas some others can not; they form 
certain zones in the search space. Zoned search divides the search space into 
zones and ignores those that cannot yield the required characteristics. As an 
example, consider a 2-dimensional search space in Figure 4(a). Assume the 
following: solutions are accepted with a 10% margin around the required vec- 
tor (zone A in Figure 4(a)) and the rule of striping assumes an increase of 
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bandwidth of 2. In this case no disks of bandwidth in the 55% - 90% region 
of the required can lead to a solution. They need additional bandwidth to be 
provided by striping. However, striping would arrange the new disk over the 
110% range of the desired bandwidth. Similarly, disks with capacity above the 
55% limit would not lead to the required solution. By striping these disks, the 
resulted capacity would be over the required. The idea can be followed in a 
recursive way, e.g. for zone B; in such a way the entire search space can be 
divided and classified into allowed and prohibited zones. This method can be 
generalized easily for other actions where the increase of bandwidth is other 
than 2. 

It is important to note that zones are allowed or prohibited with respect to 
some action. For example, allowed zones for a 3-way striping mostly coincide 
with the prohibited zones of a 2-way striping. In the above example zones that 
may lead to capacity or bandwidth over 110% of the required are considered 
prohibited zones. However, if partitioning is an allowed action, these zones 
are allowed, since they can reach the target zone by creating a disk with much 
larger capacity and bandwidth and then use partitions of it. 

Zoned search with random dropping. Zoned search may reduce search 
space significantly. However, within the allowed zones it still performs an 
exhaustive search. In the worst case scenario, when all disks can potentially 
lead to a solution, zoned search coincides with exhaustive search. Therefore, 
zoned search can also be combined with random dropping. 

Fewest steps. The method of fewest step is also based on the zones. In this 
case however, combination actions are enabled one at a time. First, configu- 
ration checks if there are disks in the target zone (zone A in Figure 4(b).) If 
there are no disks then it checks those zones where zone A can be reached in a 
single step. Therefore, it enables aggregation for zone D and then 2-way strip- 
ing for zone B. If there are still no solutions, it enables further rules that can 
lead to zones B and D in a single step: aggregation can put disks from zone E 
to zone B whereas 2-way striping can put disks from zone E to zone D. Obvi- 
ously, more way striping can also be considered with different zones. As long 
as there are no solutions, it checks recursively, how these zones can be reached 
with the fewest steps. It cuts down large parts of the search space, however, 
with a high likelyhood of not finding the solution with the lowest cost. 

Device clustering. The above search methods may assume a random disk 
population, i.e. they can be scattered evenly in the parameter space. In prac- 
tice however, there are many disks of the same type and specifications. A 
clustering method puts these disks into groups and takes into consideration 
only one representative element of them. Groups are established dynamically 
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as the configuration process goes on. The method significantly reduces search 
complexity. For instance, if there are n identical disks, the complexity of ag- 
gregation is O(n2) (n * (n  - 1)/2 potential pairs), whereas that of in case of 
clustering is O(n) (n/2 pairs.) In general, complexity is proportional to the 
number of disk groups and not to the number of disks. While there may be 
hundreds or thousands of disks in a storage system, the number of groups is 
significantly lower. Note, that this method is orthogonal to the previous ones, 
i.e. it can be exhaustive but could be combined with zoning or random drop- 
ping. Its worst case scenario, when all groups have a single element, has the 
same complexity as its non-clustered version. 

5. Evaluation 
We have implemented the framework of Conductor using CLIPS [4,8]. Our 

implementation currently provides rules for aggregation, 2-, 3-, 4-, 5-way strip- 
ing, encryption and mirroring with all the search heuristics mentioned in the 
previous section. In this section, we evaluate the search heuristics with respect 
to run-time complexity. We first present results without disk clustering and 
then we consider the effect of clustering similar disks in groups. We run our 
experiments on PCs with Intel P4-grade CPUs at 3.0 GHz and 5 12 MBytes of 
memory. 

Individual Disks. Figure 5 summarizes the search times without clustering. 
The system consists of a variable number of disks (x axis). Since in this ex- 
periment disks are taken individually, we assumed a random disk population 
where each disk has a capacity of 100, 200, 300, 400, and 500 GBytes and 
nominal bandwidth of 33, 50, 70 and 100 MBytesIs. Also, each has an initial 
cost, a one-dimensional integer metrics that is used to select the 'cheapest' so- 
lution among the functionally equivalent ones. For the sake of simplicity we 
may consider it as the dollar cost of the resource. A user asks for a virtual disk 
with 600-GByte capacity, 100-MBytesIs throughput, and a cost not exceeding 
200. For the purpose of this experiment, Conductor is allowed to use only two 
actions: aggregation and striping. All other actions are disabled. 

We see that although exhaustive search finds the best solution possible 
(minimum cost), it is in practice unable to deal with more than 24 physical 
disks. In this case it generates more than 200000 facts and fires nearly 120000 
rules, which results in unacceptably long running times (and even sometimes 
crashes). 

If we omit some of the intermediate virtual disks randomly and keep only 
one out of two, four, and eight (labeled as random 2, random 4, random 8 in 
Figure 5(a)), the search becomes viable both in compute time and memory 
capacity. This method, however, eliminates as expected some of the best solu- 
tions. Figure 5(b) compares the cost of the best solutions found. We see that 
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Figure 5. (a) Run times of different configuration search methods (left). (b) Comparison of 
the costs of the best solution found by different methods (right). 

compared to exhaustive search, these methods result in disks with higher cost. 
However, the difference decreases as the number of disks grows. 

Zoned search reduces the search space efficiently while it does not eliminate 
good solutions: It results in virtual disks with cost similar to exhaustive search 
and can handle significantly more disks. Furthermore, zoned search can be ac- 
celerated by applying random dropping and renders running times acceptable 
even for more than 40 physical disks. 

Finally, it seems that fewest-steps is an interesting but not practically use- 
fkl approach. Its running time is inconsistent: if it finds a solution in a small 
number of steps (1 or 2), as is the case with 10 physical disks, then it is sig- 
nificantly faster than other methods. Otherwise, its running time is close to 
zoned search, however, with potentially higher cost in the resulting virtual disk 
configurations. 

Clustered Disks. In practice, hardware resources, such as disks, are often 
acquired and upgraded in bulk and exhibit similar characteristics. Thus, we 
can assume that, in most cases, a large system will consist of disks that can be 
clustered based on their characteristics to a smaller number of groups. As op- 
posed to the previous experiment, where potentially all disks may be different, 
in this experiment we introduce 3, 5, and 7 different groups of disks. Since 
we anticipate that clustering will result in improved running times, we use a 
more complex example: A user requests a virtual disk with capacity of 1200 
GBytes and throughput 140 MBytesIs. Moreover, we configure two versions 
of this disk, with and without encryption. To increase the size of the configura- 
tion space, we enable in Conductor rules associated to aggregation and 2- and 
3-way striping. Finally, we only present results for exhaustive search to see the 
net effect of clustering. 

Figure 6 shows that running times are approximately three orders of mag- 
nitude smaller compared to using individual disks. Even for 128 disks of 7 
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Figure 6. Run times of clustered disk search for 3,5, and 7 groups of disks, without and with 
encryption. 

different types the search is less than 2 minutes. When including encryption 
in the target virtual disk configuration, the number of groups that needs to be 
considered doubles. However, running time remains low. 

6. Conclusions and future work 
Future, large-scale storage systems are envisioned to offer a lot of flexibil- 

ity in configuring virtual resources to meet user and application requirements. 
Configuration of large-scale storage systems that support such flexibility re- 
quires considering a large number of alternatives. For instance, a user request 
for a virtual volume of specific size, throughput, redundancy level, with en- 
cryption and compression capabilities over a system that consists of hundreds 
of physical disks will require considering millions of alternatives. Although 
this task is traditionally performed manually by experienced storage adminis- 
trators that can quickly reduce this space, it is foreseen that human cost will 
not scale with system size. 

In this work, we propose Conductor, a rule based system for evaluating con- 
figuration alternatives that meet user requirements and minimize system cost. 
Although Conductor is designed to deal with both static (initial configuration 
based on estimated performance values) and dynamic (run-time reconfigura- 
tion based on measured performance values) properties of storage systems, in 
this work we only explore initial system configuration. The main issue in this 
direction is to reduce search complexity. 

Our design relies on heuristic rules that capture human expertise and various 
search methods that aim at reducing search complexity without compromising 
the quality (cost) of the resulting configurations. We implement Conductor as 
an extension to Violin [ 5 ]  using CLIPS [4]. We find that although considering 
individual disks may be in practice prohibitive for real, large-scale systems, 
clustering disks in groups substantially improves overheads and results in a 
practical approach to exploring the configuration space. 
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The next step in our work is to explore dynamic system behavior, i.e. what 
is the quality of the proposed configurations at runtime, how far is it from user 
requirements in terms of dynamic features such as throughput and response 
time, and how we can incorporate more knowledge in system rules to allow 
for run-time reconfiguration actions that will result in improved configurations. 
Finally, besides dynamic configuration issues, future work should also consider 
mapping of virtual volumes to distributed physical resources and should take 
into account disk, CPU, memory, and network characteristics. 
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Abstract 
The quality of virtualization mechanisms provided by a storage system af- 

fects storage management complexity and storage efficiency, both of which are 
important problems of modem storage systems. We argue that current storage 
systems provide limited flexibility and extensibility in virtualizing, managing 
and accessing storage. 

In this work we address this problem by proposing Violin, a virtualization 
framework that allows easy extensions of block-level storage stacks. Violin al- 
lows (i) developers to provide new virtualization functions and (ii) storage ad- 
ministrators to combine these functions in storage hierarchies with rich seman- 
tics. Violin makes it easy to develop new virtualization functions by providing 
support for (i) hierarchy awareness and arbitrary mapping of blocks between 
virtual devices, (ii) an easily extensible 110 command set, (iii) explicit control 
over both the request and completion path of I10 requests, and (iv) persistent 
metadata management. 

In this paper we present Violin's architecture and we show how simple Violin 
modules can be combined in more complex hierarchies. Finally, we demonstrate 
hierarchies with advanced virtualization functionality that is difficult to imple- 
ment with monolithic drivers. 
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1. Introduction 

Storage is becoming an increasingly important issue as more and more data 
need to be stored either for archival or online processing purposes. As the 
amount of storage required increases, scalable storage systems provide a means 
of consolidating all storage in a single system and increasing storage efficiency. 
However, storage consolidation leads to increased requirements for "flexibil- 
ity" that will be able to serve multiple applications and their diverse needs. This 
flexibility refers to both storage management and application access issues and 
is usually provided through virtualization techniques: Administrators and ap- 
plications see various types of virtual volumes that are mapped to physical 
devices but offer higher-level semantics through virtualization mechanisms. 

We argue that the importance of virtualization at the block-level is increas- 
ing for two reasons. First, certain virtualization functions, such as compression 
or encryption, may be simpler and more efficient to provide on unstructured 
fixed data blocks rather than variable-size files. Second, block-level storage 
systems are evolving from simple disks and fixed controllers to powerful stor- 
age nodes [ I ,  81 that offer block-level storage to multiple applications over a 
storage area network [9]. In such systems, block-level storage extensions can 
exploit the processing capacity of the storage nodes, where filesystems (run- 
ning on the application servers) cannot. For these reasons and over time, with 
the evolution of storage technology a number of virtualization features, e.g. 
volume management functions, RAID, snapshots, moved from higher system 
layers to the block level. 

Today's block-level storage systems provide some flexibility in managing 
and accessing storage through I10 drivers (modules) in the I10 stack or through 
the filesystem. However, this flexibility is limited by the fact that current 110 
stacks require the use of monolithic I10 drivers that are both complex to de- 
velop and hard to combine. As a result, current block-level systems offer pre- 
defined virtualization semantics, such as virtual volumes mapped to an aggre- 
gation of disks or RAID levels. In this category belong both research proto- 
types [2, 4, 71 as well as commercial products, such as EMC enginuity and 
Veritas VM. In all these cases the storage administrator can switch on or off 
various features at the volume level, but cannot extend them. 

In this work we address the flexibility and extensibility problem by provid- 
ing a kernel-level framework for (i) building and (ii) combining virtualization 
functions. We propose Molin (Virtual I10 Layer INtegration), a virtual I10 
framework for commodity storage nodes that replaces the current block-level 
I10 stack with an improved I10 hierarchy that allows for (i) easy extension 
of the storage hierarchy with new mechanisms and (ii) flexible combining of 
these mechanisms to create modular hierarchies with rich semantics. 
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The main contributions of Violin are: (i) it significantly reduces the effort to 
introduce new functionality in the block 110 stack of a commodity storage node 
and (ii) provides the ability to combine simple virtualization functions into hi- 
erarchies with semantics that can satisfy diverse application needs. Violin pro- 
vides virtual devices with full access to both the request and completion paths 
of 110s allowing for easy implementation of synchronous and asynchronous 
110. Supporting asynchronous 110 is important for performance reasons, but 
also raises significant challenges when implemented in real systems. Also, Vi- 
olin deals with metadata persistence for the full storage hierarchy, offloading 
the related complexity from individual virtual devices. To achieve flexibility, 
Violin allows storage administrators to create arbitrary, acyclic graphs of vir- 
tual devices, each adding to the hnctionality of the successor devices in the 
graph. In each hierarchy, blocks of each virtual device can be mapped in arbi- 
trary ways to the successor devices, enabling advanced storage functions, such 
as dynamic relocation of blocks. 

Violin was first introduced in [6], where its implementation and evaluation 
are presented. This paper presents more of a system overview and examples 
of how advanced storage functionality can be implemented as a set of Violin 
modules. For more details on implementation and evaluation please refer to 
[61. 

The rest of the paper is organized as follows. Section 2 presents the de- 
sign and implementation of Rolin. Section 3 presents advanced virtualization 
modules, while Section 6 discusses related work. Finally, Section 7 draws our 
conclusions. 

2. System Architecture 

Violin is a virtual I10 framework that provides (i) support for easy and in- 
cremental extensions to I10 hierarchies and (ii) a highly configurable virtual- 
ization stack that combines basic storage layers in rich virtual I10 hierarchies. 
Violin's location in the kernel context is shown in Figure 1, illustrating the I10 
path from the user applications to the disks. The architecture of Violin is driven 
by four main concerns: (i) High-level virtualization semantics and mappings, 
(ii) Generic and extensible in-band command API, (iii) Simple in-band con- 
trol over the 110 command path and (iv) Metadata state persistence. Next we 
discuss each of these aspects in more detail. 

2.1 Virtualization Semantics 
A virtual storage hierarchy is generally represented by a directed acyclic 

graph (DAG). In this graph, the vertices or nodes represent virtual devices. The 
directed edges between nodes signify device dependencies and control flow 
through 110 requests. Control in Violin flows from higher to lower layers. This 
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Figure I .  Violin in the operating system Figure 2. Violin's virtual device graph. 
context. 

arises from the traditional view of the block-level device as a dumb passive 
device. Each virtual device in the DAG is operated by a virtualization module 
that implements the desired functionality. Virtual devices that provide the same 
functionality are handled by different instances of the same module. From now 
on, we will use the terms module and device interchangeably. 

Figure 2 shows an example of such a device graph. Graph nodes are rep- 
resented with horizontal bars illustrating the mappings of their address spaces 
and they are connected with directed vertices. There are three kinds of nodes 
and accordingly three kinds of 110 modules in the architecture: 

Source nodes that do not have incoming edges and are top-level devices 
that initiate I/O requests in the storage hierarchy. The requests are initi- 
ated by external kernel components such as file systems or other block- 
level storage applications. Each of the source devices has an external 
name, e.g. an entry in /dev for Unix systems. 

Sink nodes that do not have outgoing edges and correspond to bottom- 
level virtual devices. Sink nodes sit on top of other kernel block-level 
drivers (external to Violin), such as hardware disk drivers and, in prac- 
tice, are the final recipients of Violin's 110 requests. 

Internal nodes that have both incoming and outgoing edges and provide 
virtualization functions. These nodes are not visible to external drivers, 
kernel components, or user applications. 

Violin uses the above generic DAG representation to model its hierarchies. 
A virtual hierarchy is defined as a set of connected nodes in the device graph 
that do not have links to nodes outside the hierarchy. A hierarchy within a 
device graph is a self-contained sub-graph that can be configured and man- 
aged independently of other hierarchies in the same system. Violin hierarchies 
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are device container objects that are explicitly created before virtual devices 
(nodes) are added to them. 

To manage devices and hierarchies, users may specify the following opera- 
tions on the device graph: (i) Create a new internal, source, or sink node and 
link it to the appropriate nodes, depending on its type. (ii) Delete a node from 
the graph, or (iii) Change an edge in the graph (i.e. remap a device). 

Violin checks the integrity of a hierarchy at creation time and each time it 
is reconstructed. Checking for integrity includes various simple rules, such as 
the presence of cycles in the hierarchy graph and lack of input or output edges 
in internal nodes. Creating hierarchies and checking dependencies reduces the 
complexity of each Violin module. 

A hierarchy in Violin is constructed amdlor dynamically modified with sim- 
ple user-level tools implementing the above graph operations and linking the 
source and sink nodes to external OS block devices. 

2.1.1 Dynamic Block Mapping and Allocation. Nodes in a hierarchy 
graph do not simply show output dependencies from one device to another but 
rather map between block address spaces of these devices. As can be seen in 
Figure 2, a storage device in the system represents a specific storage capacity 
and a block address space, while the 110 path in the graph represents a series 
of translations between block address spaces. Violin provides transparent and 
persistent translation between device address spaces in virtual hierarchies. 

Devices in a virtual hierarchy may have widely different requirements for 
mapping semantics. Some devices, such as RAID-0, use simple mapping se- 
mantics, where blocks are mapped statically between the input and output de- 
vices. There are, however, modules that require more complex mappings. For 
instance, providing snapshots at the block level, requires arbitrary translations 
and dynamic block remappings [5]. Similarly, volume managers [lo] require 
arbitrary block mappings to support volume resizing and data migration be- 
tween devices. Another use of arbitrary mappings is to change the device allo- 
cation policy, for instance, to a log-structured policy. The Logical Disk [3] uses 
dynamic block remapping for this purpose. 

Violin supports dynamic block mapping through a logical-to-physical block 
address translation table (LXT) mapping between the input and output address 
spaces of a device [6]. Dynamic block mapping capabilities give to a virtual 
device the freedom to use its own disk space management mechanisms and 
policies, without changing the semantics of its input devices, higher in the I/O 
stack. 

2.2 Generic In-band Command API 

The second significant aspect of Violin is easy support for definition and 
handling of generic I/O commands on Violin's devices. Every request in the 
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system (internal or external) is serviced through a series of I10 commands 
which are handled by Violin devices. Control and data I10 requests are handled 
in the same manner, using the same in-band command mechanism for data and 
control propagation in virtual hierarchies. 

The two main design goals for Violin's I10 command definition were (i) 
to make commands as generic as possible and (ii) to allow arbitrary stacking 
of command-handling devices to create hierarchies. We believe that these are 
necessary properties for a flexible and extensible storage framework supporting 
a wide range of storage functionality. A command definition in Violin consists 
of three main parts: (i) a command opcode unique across all devices and used 
to specify the command type, (ii) a pointer to the command data in memory 
and (iii) a pointer to a block-map data structure. The purpose and usage of a 
block-map will be discussed later in this section. 

2.2.1 Basic commands vs. extended commands. Violin I10 com- 
mands can be categorized, depending on their scope, to basic and extended. 
Basic commands, such as read and write, need to be defined, "understood", and 
serviced across the entire hierarchy by all devices in the I10 path, as well as by 
the core framework code for internal purposes. They do not need, however, to 
be implemented in the core framework itself, but are implemented by all Vio- 
lin modules. The most obvious examples of basic commands are the common 
read and write commands, which perform block I10 through all devices in the 
system and need to be understood by every device in a hierarchy. They are 
also used by devices and by the framework code itself, for example to read and 
write metadata to disk. Note, however that every device has its own private 
handler of the basic I10 command, which in turn relies on the corresponding 
command handlers of lower devices in the hierarchy graph. Thus, even though 
each device is able to "see" and thus, reference only the block addresses of 
its directly-underlying device(s), as requests propagate in the hierarchy the ad- 
dresses of the blocks they reference are translated, one device at a time. In 
this manner, every request corresponding to a basic command passes through a 
path in the graph following the chain of command handlers from every device 
in the graph to the next. In case of multiple output edges, edge selection is 
handled by the corresponding command handlers in the multi-output devices. 
Finally, for reasons of module simplicity, Violin allows the definition of default 
basic command handlers, which can be used by simple layers which need the 
default edge-selection and block-mapping behavior. 

The second type of I10 commands, extended commands, are defined and 
handled only by individual devices and their modules. An extended command 
needs only to be understood by a subset of the devices in a hierarchy. A re- 
quest concerning a private command will be issued only to specific devices in 
a hierarchy that are able to "understand" it. Thus, contrary to basic commands 
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whose existence is inherently known by all devices, a device's extended com- 
mands need to register themselves to a Violin hierarchy at device initialization. 
Extended commands are much easier for the module developer to implement 
compared to basic ones, however they raise two important issues for the Violin 
hierarchy model: (i) routing decisions and (ii) block-mapping of arguments. 

2.2.2 Handling extended commands. Eolin allows arbitrary place- 
ment of devices when creating a hierarchy, let us consider a private command 
registered by a layer placed low in a hierarchy. External application requests 
issuing this extended command will have to traverse the graph passing through 
higher devices to reach the specific device. However, in contrast to basic com- 
mands, these higher devices do not know how to handle the extended com- 
mand and are not able to make routing decisions for the next device in the 
graph (edge-selection). Furthermore, Violin is not able to translate the block 
addresses of a request directly to a low-level device, since each layer is able to 
reference only the block addresses of its directly-underlying layer(s). Thus, in 
the case when block addresses are necessary as command arguments in order 
to satisfy an extended command belonging to a lower-level device, the frame- 
work needs to map block addresses to the address-space of the corresponding 
device which may be placed anywhere in a hierarchy. 

Violin's approach to both these issues is to provide block-mapping facili- 
ties to all devices in a hierarchy, independent of their location in the stack. 
More specifically, Violin allows layers to specify private commands as being 
either "block-mapped" or "regular" private commands. These two types of pri- 
vate commands have different routing and block-mapping behavior. Regular 
commands have two properties: (i) no dependence on block addresses and (ii) 
simple routing semantics, that is they simply need a graph traversal through 
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edges to the target devices. To our experience, these properties can be found 
in the majority of extended commands defined in storage layers. Violin han- 
dles regular commands by traversing the device graph and using the command 
definition table to find the target device(s). If a path traversal reaches a "sink" 
node in the graph, and no target device has been found, Violin responds with 
an error to the command. 

"Block-mapped" extended commands have more complex semantics. They 
need specific route selection through higher-level devices andlor block address 
translation since block addresses are part of the command's arguments. Such 
commands are subject to translation of arguments that represent block-ranges 
and device selection. This is achieved by augmenting each layer, i.e., extend- 
ing the layer API, with a block-mapping API call, block-map ( ) . This call 
is written by module developers for every module that is loaded in an Violin 
hierarchy and translates an input block-range to any output block-range(s) on 
one or more output devices as shown in Figure 3. Thus, Violin's block-mapping 
API deals both with routing through the device graph and block address remap- 
ping. 

2.3 Violin 110 Request Path 

Another significant aspect of Violin is how the 110 request path works, that 
is how I10 commands are issued and how they flow through the framework. 
Molin is not only reentrant but also supports synchronous and asynchronous 
requests. I10 requests never block in the framework, unless a driver module 
has explicitly requested it. Moreover, since Violin is reentrant, it runs in the 
issuer's context for each request issued from the kernel. Thus, many requests 
can proceed concurrently in the framework, each in a different context. 

A generic virtual storage framework must support two types of I10 requests: 

External requests are initiated by the kernel. They enter the framework 
through the source devices (nodes), traverse a hierarchy through internal 
nodes usually until they reach a sink node and then return back up the 
same path to the top of the hierarchy. 

Internal requests are generated from internal devices as a response to 
an external request. Consider for example a RAID-5 module that needs 
to write parity blocks. The RAID-5 device generates an internal write 
request to the parity device. Internal requests are indistinguishable from 
external ones for all but the generating module and are handled in the 
same manner. 

Command requests in Violin move from source to sink nodes through some 
path in a virtual hierarchy, as shown in Figure 4. Sink devices are connected 
to external block devices in the kernel, so after a request reaches a sink device 
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it is forwarded to an external device. As mentioned previously, when multiple 
output nodes exist, routing decisions are taken at every node, according to 
its mapping semantics. Virtual devices can control requests beyond simple 
forwarding. When a device receives an 110 request it can make four control 
decisions and set corresponding control tags on a request: 

Error Tag indicates a request error. Erroneous requests are returned 
through the stack to the issuer with an error code. 

Forward Tag indicates that the request should be forwarded to an output 
device. In this case, the target device and block address must also be 
indicated. Forwarding occurs to the direction of one of the output graph 
vertices. 

Return Control Path Tag indicates that a device needs return path control 
over the request. Some devices need to know when an asynchronous I10 
request has completed and need control over its return path through the 
hierarchy (Figure 4). For instance, an encryption module requires access 
to the return path of a read request, because data needs to be decrypted 
after it is read from the sink device. 

Complete Tag indicates that a request is completed by a device. Consider 
the example of a caching module in the hierarchy. If a requested data 
block is found in the cache, the device loads the data in the request buffer 
and sets the "complete" tag. The completed request is not forwarded 
deeper in the hierarchy, but returns from this point upwards to the issuer 
as shown at the right of Figure 4 for device C. 

A final issue with requests flowing through the framework, is dependen- 
cies between requests. For instance, there are cases where a module requires 
an external request to wait for one or more internal requests to complete. To 
deal with this, when an internal request X is issued (asynchronously) the issuer 
module may register one or more dependences of X to other requests (Y, Z, ...) 
and provide asynchronous callback functions. Requests X, Y, Z are processed 
concurrently and when each completes the callback handler is called. The call- 
back handler of the module then processes the dependent requests according 
to the desired ordering (i.e. it may wait for all or a few requests to finish be- 
fore releasing them). This mechanism supports arbitrary dependencies among 
multiple requests. 

2.4 State Persistence 
State persistence is an essential property of storage stacks. Storage layers 

that offer advanced functionality require dynamic block mappings with meta- 
data of significant size. Thus, a generic extensible framework for layered stor- 
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age such as Molin must support advanced metadata management facilities. The 
three main issues associated with metadata are: facilitating the use of persistent 
metadata, reducing memory footprint, and providing consistency guarantees. 

2.4.1 Persistent Metadata. In Molin, modules can allocate and manage 
persistent metadata objects of varying sizes using a unique object ID and the 
requested object size, as it would allocate memory. 

Molin's metadata manager automatically synchronizes dirty metadata from 
memory to stable storage in a lazy manner. The metadata manager uses a sep- 
arate kernel thread to write to the appropriate device, all in-memory metadata. 
The user can also flush metadata objects explicitly using a flush call. This is 
for example necessary for the versioning layer, which needs to ensure metadata 
stability before creating new snapshots. 

Internally, each metadata object is represented with an object descriptor, 
which is modified only by allocation/deallocation calls. During these calls 
metadata object descriptors are stored in a small index in the beginning of the 
metadata device. A pointer to the metadata header index is stored with each 
virtual device in the virtual hierarchy. Thus, when the virtual hierarchy is being 
loaded and recreated, Molin reads the device metadata and loads it to memory. 

2.4.2 Mekadata Ca~oigtenny. In the event of Eystem failurgr, where a 
portion of the in-memory metadata may be lost or partially written, application 
andlor Molin state may be corrupted. We can define the following levels of 
metadata consistency: 

Lazy-update consistency, that is, metadata are synchronized on disk over- 
m t m g  the older verslon every few seconds. This means that if a failure occurs 
between or during updates of metadata then metadata may be left inconsistent 
on-disk and Molin may not be able to recover. In this case, there is a need for a 
Molin-level recovery procedure (similar to f s ck  at the filesystem level), which 
however, we do not currently provide. If stronger guarantees are required then 
one of the next forms of consistency may be used instead. 

Shadow-update consistency, where we use two metadata copies on disk 
and maintain at least one of the two consistent at all times. If during an update 
the set that is currently being written becomes inconsistent due to a failure, 
Molin uses the second copy to recover. In this case, it is guaranteed that Molin 
will recover the device hierarchy and all its persistent objects and will be able 
to service I10 requests. However, application data may be inconsistent with 
respect to system metadata. 

Atomic versioned-metadata consistency, guarantees that after a failure, 
the system will be able to see a previous, consistent version of application data 
and system metadata. Thus, this is equivalent to a rollback to a previous point 
in time. In Molin this can be achieved by using a versioning layer [5] at the 
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leaves of a hierarchy. Although such a layer is available in Violin, its current 
implementation would need slight modifications so that its own metadata are 
handled differently in this particular case. 

Violin currently supports the first and second forms of metadata consistency. 
We expect that all three forms of consistency will be available in the kture 
releases of the framework code. 

2.5 Module API 

Extending an 110 hierarchy with new functionality is an arduous task in 
modern kernels. The interface provided by kernels for block 110 is fairly low- 
level. A block device driver has the role of servicing block 110 read and 
w r i t e  requests. Block requests adhere to the simple block 110 API, where 
every request is denoted as a tuple of (block device, read/write , block 
number, block size, data) . In Linux, this API involves many tedious and 
error prone tasks, such as I10 request queue management, locking and syn- 
chronization of the 110 request queues, buffer management, translating block 
addresses and interfacing with the buffer cache and the VM subsystem. 

Violin provides to its modules high-level API calls, that intuitively support 
its hierarchy model and hide the complexity of kernel programming. The au- 
thor of a module must set up a module object, which consists of a small set of 
variables with the attributes of the implemented module and a set of methods 
or API functions. More details on the module API can be found in [6]. 

2.6 System Implementation 

We have implemented Violin as a loadable block device driver in the Linux 
2.4 and 2.6 kernel versions, accompanied by a set of simple user-level man- 
agement tools. Our prototype implements fully the 110 path model described 
in Section 2.5. Violin extension modules are implemented as separate kernel 
modules that are loaded on demand. However, they are not full Linux device 
drivers themselves but require the framework's core. Upon loading, each mod- 
ule registers with the core framework module, binding its methods to internal 
module objects. The overhead of Violin is relatively small: benchmarks results 
are always within 10% of those achieved by monolithic drivers [6]. 

3. Advanced Virtualization Scenarios 
In this section we describe some advanced virtualization scenarios where 

using Violin would greatly reduce the time and effort to develop the required 
storage functionalities. Note that, currently, we do not have fully implemented 
all these usage examples, but we present their design as Eolin modules. In 
particular we present three virtualization scenarios: (i) dual-path fail-over and 
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Figure 5. A dual-path layer for fail-over and load-balancing and a volume versioning and 
consolidation layer for virtual machines. 

dynamic load-balancing, (ii) volume sharing services: free-block allocation 
and locking, (iii) volume versioning for virtual machines. 

3.1 Fail-over and Load-balancing 

A dual-path module provides fault-tolerance and/or dynamic load-balancing 
functionality. As shown in Figure 5(a), the module has a single input and two 
output devices. Using internal metadata, which need not be necessarily per- 
sistent, this layer balances the load between two paths to the same device and 
in case one of the paths fails, it sends all requests through the working one. 
This is a very useful function for remote storage devices (accessed for instance 
through iSCSI), where each path passes through an independent network path 
(switches, cables, etc.). In the event of a network failure this layer easily per- 
forms fail-over to the working path. Such a layer is very easy to implement 
using fiolin, since the path configuration functionality is built in. Thus the fail- 
over operation of the module amounts simply to selecting a different device in 
case it receives errors through one of the paths. Load-balancing functionality 
is also simple to implement, keeping some response statistics to make routing 
decisions for sending requests through the two paths. 

3.2 Volume Sharing 

Sharing virtual volumes between many user applications requires coordinat- 
ing (i) accesses to data and, as mentioned above, metadata via mutual exclusion 
and (ii) allocation and deallocation of storage space. To facilitate such shar- 
ing, Eolin can incorporate block-level locking and allocation mechanisms, de- 
signed and implemented as optional, separate virtual modules. This essentially 
makes locking and allocation in-band operations, eliminating out-of-band ser- 
vices that are commonly used in file systems. The locking mechanism is inte- 
grated in the virtual hierarchies as an optional virtual module and may be used 
by fiolin devices to lock shared metadata or by applications that share data at 
the block-level. Both kinds of modules can be inserted at various (and pos- 
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sibly multiple) places in a virtual hierarchy according to the needs of a given 
application. 

3.2.1 Block-range locking. Violin can provide support for block-range 
locking over a block volume. The main metadata in the locking layer is a free- 
list that contains the unlocked ranges of the managed virtual volume. When 
a lock control request arrives, the locking layer uses its internal metadata to 
either complete or block the request. At an unlock request the locking layer 
updates its metadata and possibly unblocks and completes a previous pending 
lock request. The locking API should support multiple-reader, single-writer 
locks in both blocking and non-blocking modes. 

To achieve mutual exclusion, locks for a specific range of blocks should be 
serviced by a single locking virtual layer. This is achieved by placing lock- 
ing layers at specific points in the hierarchy. Multiple layers may be used for 
servicing different block ranges. Thus, load balancing lock requests across 
multiple devices is simplified. 

Lock and unlock requests are block-mapped commands (see Section 2.2). 
This allows us to distribute the locking layers to any desirable serialization 
point in a hierarchy. Note that the metadata of a locking layer does not need to 
be persistent. Instead, we use a lease-based mechanism to reclaim locks from 
a failed application. 

3.2.2 Block allocation. The role of a block allocator module is to han- 
dle block management in a consistent manner for applications sharing the same 
block volume. The allocator distributes free blocks to the applications and 
maintains a consistent view of used and free blocks. All such block-liveness 
information is maintained by the allocator, offloading all the potentially com- 
plex free-block handling code from higher system and application layers. 

The allocator metadata for managing free blocks consist of free-lists and 
bitmaps to handle blocks of various sizes, which are kept consistent by using 
the persistent metadata locking primitives. Frequent locking at fine granularity 
will result in high allocation overheads. To address this issue we can amor- 
tize the overhead associated with locking metadata by dividing the available 
(block) address space of a shared volume in a sufficiently large number of al- 
location zones. Each zone is independent and has its own metadata, which can 
be locked and cached in memory when using this particular zone. 

The metadata of locked zones are automatically synchronized to stable stor- 
age, similarly to all other module metadata in Violin, in two occasions: (i) pe- 
riodically every few seconds and (ii) when a zone is unlocked and its metadata 
released from the cache. 
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3.3 Optimized storage support for virtual machine images 

Nowadays, there is a growing resort to (system-level) virtual machines 
(VM) in the context of data centers. They have proven to be a useful tool 
to address needs such as server consolidation, interoperability, and flexible 
administration (e.g. time and space mobility). As a consequence, a farm of 
servers may now host thousands of different operating system images, which 
raises concerns regarding the scalability of the underlying (shared) storage sys- 
tem. 

It has been observed that a VM image store exhibits a set of specific prop- 
erties [I  I]. In particular, (i) there is no write sharing for a given image, (ii) 
block-level snapshots are used extensively, and (iii) different VM images (and 
different snapshots of a given image) have many blocks in common. 

By combining modules implementing different features such as versioning, 
content-based addressing and (virtual and physical) space allocation, we could 
obtain such a suitable VM image block store. Figure 5(b) illustrates the struc- 
ture of such a storage system on a single node. The modular nature of Violin 
facilitates the integration of multiple virtualization semantics. In this example, 
copy-on-write techniques are used both at the level of the per-VM version- 
ing layer and at the level of the (shared) content-based addressing module, to 
achieve good performance and space efficiency. 

4. Related Work 

Violin is related to previous on (a) extensible filesystems, (b) extensi- 
ble network protocols, and (c) block-level storage virtualization. In the lat- 
ter area, the two most advanced open-source volume managers currently are 
EVMS and GEOM. EVMS [4], is a user-level distributed volume manager 
for Linux, which supports user-level plugins. However, it does not offer per- 
sistent metadata or block remapping primitives to these plugins. Moreover, 
EVMS focuses on configuration flexibility with predefined storage semantics 
(e.g. RAID levels) and does not easily allow generic extensions (e.g. version- 
ing). GEOM [7] is a stackable BIO subsystem for FreeBSD. The concepts 
behind it are, to our knowledge, the closest to Eolin. However, GEOM does 
not support persistent metadata which, combined with dynamic block mapping 
are necessary for advanced modules such as versioning [5]. Eolin has all the 
configuration and flexibility features of a volume manager coupled with the 
ability to write extension modules with arbitrary virtualization semantics. 

For a detailed discussion of all related work, please refer to [6]. 
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5. Conclusions 
In this work we present Violin, a virtualization framework for block-level 

disk storage and the motivation behind it. Violin allows easy extensions to 
the block 110 hierarchy with new mechanisms and flexible combining of these 
mechanisms to create modular hierarchies with rich semantics. 

To demonstrate its effectiveness we implement Eolin within the Linux op- 
erating system and provide several I10 modules. In previous work [6], we have 
showed that Violin significantly reduces implementation efforts. For instance, 
in cases where user-level library code is available, new Violin modules can be 
implemented within a few hours. Finally, the performance overhead of Violin 
over traditional, monolithic drivers and driver-based hierarchies, is within 10% 
of their counterparts [6]. 

Overall, we find that our approach provides adequate support for embed- 
ding powerful mechanisms in the storage 110 stack with manageable effort 
and small performance overhead. We believe that Violin is a concrete step 
towards supporting advanced storage virtualization, reducing storage manage- 
ment overheads and complexity, and building self-managed storage systems. 
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Abstract Nowadays grid applications process large volumes of data. This creates the need 
for an effective data-management solutions. For the ClusteriX project the CDMS 
(ClusteriX Data Management System) is being developed. Analysis of user re- 
quirements and existing implementations of a Data Management System have 
been the foundations for its creation. Special attention has been paid to make 
the system user-friendly and efficient. 

Taking into account grid specific networking conditions, for example differ- 
ent bandwidth, current load and network technologies, between geographically 
distant sites, CDMS tries to optimize data throughput via replication and replica 
selection techniques. Another key feature to be considered during grid service 
implementation is fault-tolerance. In the CDMS modular design and distributed 
operation model assures single point of failure elimination. In particular multi- 
ple instances of Data Broker are running simultaneously and their coherence is 
assured by a synchronization subsystem. 

Keywords: data management, data safety, replication, fault-tolerance, GRMS. 
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1. Introduction 

Data management issues are amongst the most important in modern grid 
environment [ I ,  131. As the applications being run on grids become more real- 
life oriented, they generate or depend on data sets of growing importance and 
confidentiality. 

One of the principal goals of data management systems in grids is to pro- 
vide transparent and efficient access to globally distributed data [I]. Among 
the most important issues that need to be solved are: optimization of the data 
transfers over the WAN, reliability and security of data access and ease of use 
P I .  

The most frequently encountered approach to solving these problems is 
based on application of metadata and mechanism of data replication [2, 111. 
Metadata are used, e.g., for the translation of a logical filename to its physical 
location. The replication mechanism should provide optimization of data ac- 
cess and reliability. An example of a modern data management system based 
on the above-mentioned mechanisms is the Reptor system [lo], developed as 
a part of the EU DataGrid Project. Being one of the most advanced grid data 
management systems, it still does not provide h l l  transparency, and is difficult 
to use. Its other shortcomings are: the lack of mechanisms of adaptation to 
the network infrastructure, and presence of single points of failure, e.g., single 
Metadata Repository. 

ClusteriX (National Cluster of Linux Systems) is a distributed national com- 
puting infrastructure with 12 sites (local Linux clusters based on 64-bit Ita- 
nium2 processors) located across Poland [3, 141. ClusteriX sites are connected 
by the Polish Optical Network PIONIER providing a dedicated communication 
infrastructure. This paper presents our experience in building the ClusteriX 
Data Management System (CDMS) its architecture and use cases [9]. 

The paper is organized as follows. In Section 2, we introduce the base 
requirements placed on the Data Management System while the CDMS archi- 
tecture minutes are presented in Section 3. Section 4 is devoted to system in- 
terface, while Sections 5 and 6 describe respectively the integration of CDMS 
with end-user applications and the GRMS Resource Broker. The paper finishes 
with conclusions in Section 7. 

2. Data Management System 
A modern Data Management system should be implemented with the fol- 

lowing features in mind: transparent access, reliability, security and safety of 
transferred and stored data, access control, possibility of transparent data com- 
pression and access optimisation. 

The development of an intuitive and effective data access and system ad- 
ministration toolkit was seen as an equally important task. It is particularly 
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necessary when the end-user is not expected to be aware of the low-level mech- 
anisms and in the CDMS an Virtual File System (VFS) abstraction layer was 
implemented, creating an illusion of working with a local file system. 

External 
USER API Services 

+ + + 
CDMS Broker 

I CDMS CORE 

Storage Element 

Figure I .  Architecture o f  the CDMS. 

2.1 Transparent Data Access 
Data access mechanisms should be implemented as a layer between client 

application and Data Management System. Such an approach allows to hide 
low-level mechanisms and improve them without the need for rewriting end- 
user application. This, in addition to a well-designed API, provides developers 
and scientists with a stable platform for Grid-oriented development. Moreover, 
the end-users can utilize latest functionality without any modifications to their 
software. 

Moreover, this approach allows for modular design of the Data Access Sys- 
tem which in turn makes possible fast delivery of a basic functional version 
of the system and further development of its parts with no disturbances to the 
functional part. For example this may allow for implementation of "intelligent 
data access" functionality and "plugging it in" on selected distributed systems 
which will provide the necessary infrastructure (e.g. multiple, geographically 
distant Data Storage Elements). 
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2.2 Data access optimisation 

A modern Data Management System should provide data access optimi- 
sation mechanisms. The main task of this subsystem is choosing the most 
suitable data location to use, taking into account multiple factors, such as: 

available resources on the storage elements 

network properties: 

- bandwidth 

- topology 

- current throughput 

rn user access permissions 

Additionally to improve effectiveness and minimise data access time data 
partitioning mechanism (splitting into smaller parts) could be used. In such 
case Data Broker would decide on partitioning of the file and then it would 
search optimal locations for the parts. Every part would be replicated in several 
locations to minimise chance of losing the data in case of a failure. Such solu- 
tion, besides improving the system fault-tolerance, would as well improve data 
access time by copying several parts in parallel from different locations. Not 
without value is fact that this storage method increases security of the stored 
data. To provide correct data reconstruction metadata stored in the metadata 
server would have to contain information allowing proper rebuilding of a file. 

2.3 Reliability 

Reliability is one of the most important aspects of the Data Management 
System. The following basic functionalities are required: 

improving fault-tolerance of the system by providing Data Replication 
mechanism 

automation and control by the Data Broker assures maximum trans- 
parency 

Increase of reliability level could be accomplished by elimination of the 
single-point-of-failure. The basic way of achieving this is implementation of 
a distributed Data Broker Service. This implies: 

automated control takeover in case of failure 

= metadata replication and synchronisation 

distributed metadata server 

heartbeat mechanism 



ClusteriX Data Management System (CDMS) -Architecture and Use Cases 103 

Figure 2. Chain Transfer 

2.4 Security and Safety of Data 
To provide required level of security, the Data Management System must 

include: 

user authentication and authorisation (e.g. GSI based) 

data encryption possibility 

permissions delegation (single-sign-on) 

To improve data safety the following mechanisms could be implemented: 

Access Control Lists embedded in the metadata 

Data partitioning (only a part of data is available on each storage ele- 
ment) 

dataset name transformation (e.g. md5) 

2.4.1 Access Control Lists. Access Control Lists allow to manage ac- 
cess to resources, constrain users' rights and manage visibility of data. When 
every part of the Data Management system will be capable of using ACLs the 
security of the stored data can be managed according to user demands. The 
data available to every member of a given community or even every user of 
the Grid would be advertised and visible to everyone requesting it. This may 
include scientific papers, results of community founded research, conference 
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materials, tutorials and such. Data considered available for anyone willing to 
pay for it may be advertised, but it will be accessible only to users authorised 
by its owner. Finally the confidential data would be invisible for anyone but its 
owner and the authorised users. 

To allow for such a functionality the ACLs must be included in the meta- 
data and properly understood by the Metadata Server. The Data Broker uses 
delegated user credentials while performing user-requested operations. This 
allows to control the metadata operations commited by the Data Broker on 
users behalf. 

CDMS Storage E l e m e n t  

,.cLUSTERIX ( e Z Z  

. CDMS Bmker p" -b 

Figure 3. Data Partitioning 

2.4.2 Data Partitioning. Data Partitioning enables increased data secu- 
rity, since no Storage Element holds complete data and the partitioning infor- 
mation is available only to Data Broker. Furthermore it is possible to accom- 
modate part size to the space available to the user on a given storage element 
which provides for better usage of the storage space. 

In addition to the improvement in data security, data partitioning increases 
the performance of the Data Management system by allowing parallel trans- 
mission of multiple parts of the data set from different Storage Elements. 
Moreover it enables load balancing between Storage Elements and eliminates 
bottlenecks that would occur if data were not partitioned and a single Storage 
element received a request for a large data set. Currently such a request will be 
directed to multiple Storage Elements storing parts of the data. 
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Data Partitioning Mechanism functioning consist of two parts: storing the 
data in the system and its retrieval on user's demand. The first part consists of 
the following steps: 

rn client authenticates and authorises in the GSI subsystem 

rn new dataset is registered in the Data Broker 

Data Broker: 

- decides on partitioning of the dataset and searches for the optimal 
locations 

- digests the dataset name 

- encrypts and splits the data (if required) and stores the parts on the 
Storage Elements 

- updates the Metadata Server information 

Upon successful completion of this sequence user's data is stored in the system 
and by default visible only to its owner. This prevents the possibility of acci- 
dentally leaving data prone to unauthorised retrieval by a forgetful user or by 
a network failure preventing the owner from finishing the access control setup. 
Access permissions may be specified in the data storage request if necessary. 

Data retrieval operates in a reverse manner from the data storage process: 

rn Client authenticates and authorises in the GSI subsystem and requests 
data retrieval using dataset name 

Data Broker: 

- digests the dataset name and checks user's rights in the Metadata 
Server 

- retrieves the partitioning information and chooses the optimal Stor- 
age Elements for data retrieval 

- retrieves parts of the dataset, reunites files, decrypts and transfers 
it to the requested location 

2.5 Distributed Data Broker 
To ensure stable operation of the Grid environment the elimination of a 

single-point-of-failure is a critical task. Data Management System as one of 
its most important subsystems must be well-protected from the possibility of 
a breakdown in case of a computer system or network failure. Implementation 
of a distributed Data Broker service is crucial to achieving such an immunity. 
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M E N T  SYST 

Figure 4. Distributed Broker Architecture 

The proposed solution makes use of an Information System. The user agent 
queries IS for the Data Broker location, receives current Primary Data Broker 
address and continues communication with the Data Broker. 

When the Primary Data Broker becomes unavailable because of a system 
or network failure the Synchronisation Subsystem detects the problem and the 
Secondary Data Broker takes over Primary Broker functions and updates IS 
record about its parameters. When the original Primary Data Broker gets re- 
connected it starts operation as the last one in the hierarchy and rebuilds its 
information by querying the up-to-date systems. 

3. System Architecture 

The architecture of the ClusteriX Data Management System was introduced 
in [9]. It has a modular design and consists of (Fig. 1): 

- Main Management Module (CDMS Core) 

- Global Data Catalogue (GDC) 

- Local Data Catalogue (LDC) 

- Transport Subsystem 

- Synchronization Module 

- Statistic Module 
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- Optimization Module 

- Replication Module 

The main part of the system is the CDMS Core responsible for data col- 
lections management, data coherence, running the Optimizer and Replicator 
processes and data transfer initialization. Using data stored in the Global Data 
Catalogue, the Main Management Module performs the mappings of logical 
filenames to the Storage Element holding the data. Proper functioning of the 
GDC is crucial for reliable operation of the CDMS, which makes replication 
of this data vital for the entire system. 

The responsibility of the Replication Module is to perform data replication 
on the CDMS Core request. It currently allows for the initial and automatic 
replication. 

The initial replication process consists of three stages: choice of the suitable 
Storage Elements, replication planning, and the replication itself. Accepting a 
request for an incoming data transfer - from a user into the CDMS - the Main 
Management Module queries the Optimization Module for possible locations 
for the incoming data. Next it takes the first two entries from the returned list, 
and initiates the parallel data transfer. 

The automatic replication is carried out by the Replication Module when 
the system load is low. It decides upon decreasing or increasing the number of 
replicas using information provided by the Statistic Module. When the demand 
for a given dataset increases, the number of replicas is increased as well. When 
the data are no longer needed, the number of replicas is decreased accordingly 
by removing the least accessed copies [12]. 

The main task of the Optimization Module is determining the best data lo- 
cation from available replicas. The application of this module decreases delays 
in data access and balances the load between Storage Elements. The Optimiza- 
tion Module uses such statistical data as network throughput and performance 
of Storage Elements, as well as measured values like current network load, 
system load and available disk space on Storage Elements. 

The Transport Subsystem has been introduced to increase the CDMS perfor- 
mance during data transfers. It consists of the Proxy Transport Agents (PTAs) 
and the Transport Agents (TAs). The PTA is responsible for transferring data 
between the user and the CDMS. It runs as a standalone process, accepting 
data transfer requests from the CDMS Core. Such a solution allows the CDMS 
Core to select the agent located closest (in networking terms) to the served 
user. 

The main task of a TA is transferring data between Storage Element and the 
Proxy Transport Agents. Data sent by the user to PTA are directed to a suitable 
TA. The CDMS Core asks the Optimization Module for the suggested data lo- 
cations, and then it requests the proper TA to perform the required operations. 
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An important feature of the Transport Subsystem is parallel data transfer be- 
tween the Proxy Agent and the Transport Agents. It enables data replication 
in the very moment they enter the Data Management System. Taking into ac- 
count that the network infrastructure inside ClusteriX core has considerably 
greater thoroughput than the external network, the overhead generated by the 
replication is negligible. 

3.1 Implementation 
The CDMS has been implemented in the C language (Optimisation an 

Replication Modules excepted) using the gSOAP package [4]. An adequate 
data transmission security, x509 certificates infrastructure and gsiftp protocol 
support have been achieved using Globus Toolkit 3.x libraries [5]. 

In the grid infrastructure based on the Globus Toolkit, users are identi- 
fied using x509 certificates, which have unique subjects. This fact is the 
foundation of user namespaces introduced in CDMS, which are named af- 
ter the subject of an user certificate. This approach eliminates possibility 
of collisions in file and directory names. Every user in the CDMS sys- 
tem has his own file system root (I) located in his namespace. The Uni- 
versal Resource Locator (URL) for the CDMS system is defined as follows: 
cdms : / / [user -namespace] /url -path. The user-namespace part can 
be omitted, in such case the subject of the certificate used to access the data 
will be used automatically. 

4. System Interface 
The access to the system resources is possible via a Webservice interface 

using the SOAP protocol. Such a solution allows to make client applications 
independent from the operating system and programming language. An exam- 
ple of a CDMS client application is the administrative toolkit implemented in 
the C language for the LinuxIUNIX platform. Another example is the Grid- 
Sphere portlet, offering a rich user-level access functionality, implemented in 
the Java language [6]. 

Every interface function returns a message which consists of two parts. The 
first one contains the error code and the error message. The second part is 
strictly dependent on the called function, and contains the relevant data, for 
example, directory listing. The system interface consists of the end-user and 
the administrator parts. 

The basic functionality of the CDMS is accessible by a set of functions 
belonging to the end-user interface. They allow user applications to create 
and remove directories, copy data between CDMS and local file system, list 
contents of directories, etc. The basic set of user utilities is a part of the CDMS 
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package. They have been deliberately implemented to resemble standard Unix 
utilities. For example, c lx-1 s / displays contents of a user home directory. 

A package of administration utilities has been provided as well. They use 
the WebService interface to communicate with the CDMS broker. The pro- 
vided functionality includes: creation and removal of user account, quota ma- 
nipulation and modification of access control lists. 

The CDMS administration will be greatly simplified by a Gridsphere portlet 
which is currently under development. It will allow the system to be admin- 
istered via a web browser, making this task completely independent from the 
operating system. 

5. Integration of End-User Applications with CDMS 
Computational applications can use CDMS directly or indirectly. The most 

common situation is when an application works with files stored on a local file 
system. In such case, input files of the application can be staged in from the 
CDMS, and the results stored in the CDMS during the stage-out phase. This 
is the "indirect" use, and does not require any modification of the application 
itself. 

Another case is when the application is modified to use the CDMS directly. 
This involves use of the WebService interface via the SOAP protocol. Addi- 
tionally any interaction with the CDMS must be authenticated and later en- 
crypted via the GSI layer, so support for this feature is another requirement 
for the application. After satisfying these requirements, the end-user would be 
able to request data transfer to and from CDMS during computations. 

The general scheme of the application execution is very similar in both 
cases. First the user places a request to the Resource Broker, e.g. GRMS, 
specifying resource requirements, input and output data, and providing it with 
a credential, allowing it to interact on the user behalf with CDMS as well as 
the local jobmanagers. The Resource Broker selects an appropriate computa- 
tional resource, requests input data transfer and commits the application to a 
local job manager. After the computations are finished, the obtained results 
are retrieved from the local file system and placed in the CDMS. The sole dif- 
ference is that the CDMS-aware application can fetch additional data during 
run-time, for example, after assessing results obtained at a specific point of 
computations. Also, such an application can place partial results in the Data 
Management System allowing the user to check on the application progress 
periodically, or use them as the input data for another application. 

6. Integration with GRMS 
A very important part of the CDMS development was to implement mech- 

anisms of cooperation with the Resource Broker. The final result is almost a 
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complete transparency of this cooperation from the user point of view. The 
only difference is a modification of the URL. In a basic grid infrastructure data 
management is based on a ftp server accessed via the gsiftp protocol, and the 
URLs point to such a server. In a CDMS-enabled infrastructure URLs point to 
logical file names (Fig.5), which are further resolved by the Data Broker. 

<grms job appid = "demo"> 
<simple j ob> 

<executable type="singleH count="l"> 
<file name="exec-f ile" type=I1in"> 

<url>cdms:///demo.pl</url> 
</file> 

</executable> 
</simple j ob> 

</grms j ob> 

Figure 5. Sample job description including CDMS URL. The demo. pl file is located in the 
root directory of the user running this job 

The GRMS analyses the job description, and decides whether an initial data 
transfer is necessary. When the application specifies a remote source of data in 
a standard grid infrastructure, GRMS is responsible for copying the data via a 
third-party transfer to a computational resource. With CDMS such a scenario 
is not possible because the physical data location is unknown. In this case, the 
GRMS connects to the CDMS Broker and requests the data to be transfered on 
the designated node. 

In the CDMS Webservice interface, multiple functions for copying data to 
computational nodes are defined. For the integration with Resource Brokers, 
the following functions are designated: 

1) enum CopyStatus ( COPYING, FINISHED, FAILED } ;  

2) CopyStatus copyToCEBlocking( string lfn, string url ) ;  

3) CopyStatus copyFromCEBlocking( string lfn, string url ) ;  

4) string copyToCE ( string lfn, string url ) ; 
5) string copyFromCE( string lfn, string url ) ;  

6) CopyStatus getCopyStatus( string sid ) ;  

The blocking functions (2 and 3) require as the parameters the logical file 
name (URL in CDMS), and external data locations, e.g., URL pointing to the 
computational resource storage. They return the status of copy operation (FIN- 
ISHED or FAILED). The non-blocking functions (4 and 5) accept exactly the 
same parameters as their blocking versions, but they return an unique data 
transfer session identifier (SID). It can be used to check the current status of 
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a data transfer via the getcopystatus function. It may return one of the 
states defined in the Copystatus enum. Such an approach allows for the 
CDMS integration with any Resource Broker. 

6.1 Stage-In Scenario 
The sequence diagram (Fig.6) presents the CDMS actions during a data 

transfer request from the Resource Broker. 
In the first step, the GRMS decides upon the resource assignment, and re- 

quests a data transfer to be performed. At the moment, GRMS uses blocking 
functions so the copyToCEBlocking function will be called (1). 

Figure 6. Stage-in sequence diagram 

The Management Module of CDMS verifies if the requested file exists in 
CDMS (2), and calls the Optimization Module to determine the best physical 
data location to be used (4). The Optimization Module requires, as its in- 
put, the destination of requested data, list of Storage Elements holding replicas 
of the file, and file size. Using these parameters and querying the Network 
Resource Manager, the Optimization Module orders the list of Storage Ele- 
ments by feasibility and returns it to the Management Module. The CDMS 
Broker delegates user credentials (obtained from the GRMS) to the selected 
Storage Element, and requests it (6) to perform data transfer to a computa- 
tional resource (7). When this data transfer is finished (or it has failed), the 
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copyToCEBlocking function returns (10) with a proper status code, and 
the GRMS continues with the job preparation and execution. 

Figure 7. Stage-out sequence diagram 

6.2 Stage-Out Scenario 
After the job is finished, the results have to be retrieved from the compu- 

tational resource. If the user requested them to be placed in the CDMS, the 
GRMS again contacts the Data Broker to request data transfer. In Fig.7 the 
sequence diagram for such a scenario is shown. 

First the GRMS calls (I) a blocking function copyFromCEBlocking 
with the proper parameters (logical file name and physical data location). The 
CDMS Broker checks whether such a file exists (2). If so, all the replicas will 
be updated to the new version and if it is a new file, CDMS creates its logical 
instance in the Global Data Catalogue, and starts the optimization process (4). 
In this case, the Optimization Module requires only the file size and physical 
data location as parameters. The Management Module receives an ordered list 
of feasible Storage Elements, then delegates user credentials and requests the 
data retrieval to be performed (6), using the Webservice interface of Storage 
Element. After the transfer is finished, the copyFromCEBlocking function 
returns (lo), and GRMS continues with the job finalizing procedures, while 
CDMS initiates the replication process for the newly received data (1 1). 
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7. Related work 
Because the idea of Data Management encompasses databases, distributed 

filesystems, remote file access protocols as well as local filesystems and HMS 
solutions we decided to focus on a subset of available systems. Taking into 
account that the CDMS is designed to work in a Globus Toolkit based grid in- 
frastructure we will treat this feature as the common denominator for discussed 
solutions. 

7.1 Data movement in the Globus Toolkit 

The Globus Toolkit offers a basic set of grid services. Among them there 
are Data Management related ones, namely GridFTP, RFT, RLS and DRS[5]. 

The GridFTP is an extension to the standard FTP. Added are GSI based 
authentication and authorisation mechanisms and the basic, fast and effective 
file transfer protocol is preserved. Although globus-url-copy and the GridFTP 
are in general very powerfull tools they have some limitations. Most important 
is the fact that while globus-url-copy can recover from remote failures - server 
and network outages - a problem on the client side means that the recovery is 
not possible. To address this issue a service preserving the data transfer state is 
needed. Such a solution is offered by the Reliable File Transfer (RFT) service. 

The RFT is a service based on the Web Service Resource Framework 
(WSRF), which provides the functionality encountered in resource brokers - 
user can submit a data transfer request via a webservice interface, specifying 
data source and destination. Later the transfer status may be controlled via the 
same interface. Similar features are available in CDMS as well, but the CDMS 
was developed with Globus Toolkit 3.x in mind and the RFT was introduced 
in the 4.x series. 

The Replica Location Service (RLS) is a tool providing simple, distributed 
registry for keeping track of replicas on physical locations. Logical file namess 
(unique identifiers for contents of a file) are mapped to physical file names on 
a storage system. 

The Data Replication Service ensures that a specified set of files exists on a 
storage site. It is based on the RLS and RFT and provides WSRF interface. It 
was introduced in Globus Toolkit 4.0. 

The CDMS provides automated data replication based on independent 
mechanisms. 

7.2 Alternative implementations 
Data Management System (DMS) is a data management solution developed 

in the frame of the PROGRESS project[7]. It's main goal was to provide a data 
storage mechanism for the PROGRESS system and data access via a broad 
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gamut of network protocols. The system architecture is quite similar to the 
CDMS architecture, but obviously it is aimed at a very narrow user group so a 
feature comparison is not really possible. 

In general there are different data management solutions available, but usu- 
ally they are either developed for a specific user group or aimed at specific 
task. Moreover in many projects an intuitive user interface was not considered 
as an important goal and they require a fair amount of network protocol or 
grid knowledge from the end-user. The CDMS strives to fill the gap providing 
intuitive user interface to a complex data management solution. 

8. Conclusions 
The CDMS is an advanced grid data management system, providing the 

end-user with efficient mechanisms for data transfer and storage. A very im- 
portant feature of this system is its near complete transparency to users and 
seamless integration with the Resource Manager. On the other hand, advanced 
users are able to efficiently utilize the CDMS for inter-application data transfer, 
and to implement modules adapting CDMS to their needs. 
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1. Introduction 

The Grid aims to support secure, flexible and coordinated resource sharing 
by providing a middleware platform for advanced distributed computing 
[6] . Grid middleware architectures aim to allow collections of any kind of 
resourcescomputing, storage, data sets, digital libraries, scientific instruments, 
people, etc to easily form Virtual Organizations (VOs) that cross organiza- 
tional boundaries in order to work together to solve a problem. However, 
existing Grid middleware architectures and the standards on which they are 
based on, fall short of addressing some of the original vision of configurable, 
self-healing, adaptive, and interoperable middleware [6]. This is due mainly 
to the following reasons: 

Knowledge burial. Knowledge and metadata regarding Grid entities is 
currently generated and used in an ad hoc fashion, much of it buried in the 
middleware's code libraries and database schemas. This esoteric expression 
and use of knowledge hinders interoperability when it comes to building open, 
interoperable and adaptive systems. Existing Grid middleware is therefore 
considerably affected by syntactic changes in protocols and representations, 
and it becomes highly dependent on human intervention during its operation. 

Dominance of XML-based vocabularies and protocols. The Grid com- 
munity has developed a number of specifications and standards that aim to 
increase interoperability among middleware components. XML has become 
the de-facto language not only for expressing these specifications, but also 
for describing Grid entities and their behaviour. However, XML-based 
specifications do not provide a complete solution to the problem of knowledge 
burial due to the lack of a shared formal interpretation of XML documents. 

Lack of models for Grid processes. Many aspects of the Grid are still not 
formally defined, therefore it becomes difficult to identify the challenges 
and even more difficult to find solutions. Take as an example the formation 
of Virtual Organizations (VOs); creating a model for forming VOs can 
help setting-up a community-wide terminology, highlight differences among 
existing systems and bring about previously unforeseen issues to be solved 
for interoperability. This model should be the product of a knowledge 
acquisition process, similar to those being undertaken by the Web [4], Web 
Services [3]and Semantic Web Services communities [9, 141. The outcome 
of the modeling process can be used for the development of interoperable 
metadata based on explicit semantics. 
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The Semantic Grid is an extension of the current Grid in which information 
and services are given well defined and explicitly represented meaning, better 
enabling computers and people to work in cooperation [8]. In the Semantic 
Grid, the goal of sharing virtualized computational and data resources is ex- 
tended to include explicit metadata and knowledge. During the last few years, 
several projects have embraced this vision and there are already successful pi- 
oneering applications that combine the strengths of the Grid and of semantic 
technologies [15]. As a result of some of these efforts, the S-OGSA refer- 
ence architecture has been recently proposed [5], with the aim of providing a 
systematic approach for designing Semantic Grid applications. 

This paper is focused on the dynamic aspects of semantic Grid. We begin 
by presenting a summary of S-OGSA ("semantically enhanced OGSA"); then 
introduce a use case for Semantic Grid, namely semantic meta-scheduling of 
Grid resources [ l  11. With the help of the use case, we present two service inter- 
action patterns that demonstrate the key aspects of Semantic Grid dynamics in 
S-OGSA. Finally, we provide some conclusions and future research directions. 

2. Semantic Grid concepts 
In this section we provide a summary of the fundamental properties of S- 

OGSA; a more comprehensive discussion can be found in [ S ] .  S-OGSA con- 
sists of (i) an information model of semantic resources, which extends the 
OGSA model, and (ii) two new types of Grid services, Semantic Provision- 
ing Sewices and Semantically Aware Grid Services. 

2.1 A Semantic Grid Information Model 

Two types of entities are at the basis of the information model: 

Grid Entities (G-Entities) are anything that carries an identity on the Grid, 
including resources and services [19]; 

Knowledge Entities are special types of Grid Entities that represent or could 
operate with some form of knowledge. Examples of Knowledge Entities 
are ontologies, rules, knowledge bases or even free text descriptions that 
encapsulate knowledge that can be shared. Knowledge services are those that 
provide access to or operate over those knowledge resources, e.g. rule engines 
and automated reasoners. 

Semantic Bindings (S-Bindings) are the entities that come into existence 
to represent the association of a Grid Entity with one or more Knowledge 
Entities. The existence of such an association transforms the subject Grid 
entity into a Semantic Grid Entity. Semantic Bindings represent metadata 
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assertions on web resources. In our model, Semantic Bindings are first 
class citizens as they are modelled as Grid resources with an identity and 
manageability features as well as their own metadata. 

Semantic Grid Entities are those Grid Entities that are either the subject of 
a semantic binding, are themselves a semantic binding, or a Knowledge En- 
tity. In keeping with our design principles, Grid entities can simultaneously 
be associated with zero or multiple knowledge entities of different forms and 
capabilities, and can acquire and discard associations with knowledge entities 
through their lifetime. It should be noted that S-OGSA does not prescribe any 
specific technology for the realisation of these. 

2.2 Semantic Provisioning Services 
These are services that provision semantic entities. These Semantic Services 

are themselves Grid Services. Following the aforementioned classification of 
semantic entities, two major classes of services are: 
Knowledge provisioning services (KPS), which can produce (and in some 
cases store) knowledge resources, and that can be used to manage knowledge 
resources. KPS support the creation, storage and access of different forms 
of knowledge resources. For example: ontology services (a major form of 
knowledge) and reasoning services. 

Semantic Binding provisioning services, which can produce (and in some 
cases store) S-Binding resources, and that can be used to manage S-Binding 
resources. For example: semantic binding index services, for accessing and 
storing metadata associating Grid entities with knowledge entities; and an- 
notation services for generating metadata from different types of information 
sources, like databases, files or provenance logs. S-Bindings are stateful, so 
they are subject to soft state processes; i.e. they will time out, get deleted or be 
removed. A typical way of producing S-Bindings is by annotating Grid entities 
as is shown in the Grid entities annotation pattern (Section 4). 

2.3 Semantically Aware Grid Services 
This class of Grid Services are able to exploit semantic technologies to con- 

sume semantic bindings in order to deliver their functionality. Their role is 
complementary to the role of Semantic Provisioning Services since they con- 
sume the semantic entities held by Knowledge provisioning services and Se- 
mantic Binding provisioning services and use their services. The combina- 
tion of Semantic Provisioning Services and Semantically Aware Grid Services 
can address the knowledge burial problem discussed in Section 1 since explic- 
itly shared knowledge can be consumed by third party services. Semantically 
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Aware Grid Services are able to exploit explicit semantics, and therefore can 
benefit from the additional context it provides for service operation. Examples 
include: 

A VO Manager service that can perform semantics-aware service ac- 
cess authorization; 

w A Grid resource catalogue that supports semantic searches; 

An ontology service that is capable of incorporating new concepts into 
an ontology. 

3. The Grid scheduling use case 
We illustrate the use of semantic grid concepts in practice, by describing an 

existing Grid service that is currently being enhanced as a semantics-aware ser- 
vice. The service addresses a real and common problem in the area of resource 
co-allocation on the Grid. The problem of resource co-allocation emerges 
when dealing with complex workflows that require multiple data, computing 
and network resources; these resources are commonly highly distributed, and 
are subject to autonomous and independent management by different organi- 
zations. 

We are specifically interested in resources whose usage is controlled by 
schedulers on the Grid, either at the local or the cluster level; allocating mul- 
tiple such resources and orchestrating their access requires the introduction of 
a new type of Grid service, called a meta-scheduler (MS) or super-scheduler. 
The MS is responsible for the co-scheduling [17] of resources in order to as- 
semble, on demand, a virtual machine that enables the execution of distributed 
jobs consisting of many parallel tasks. In particular, the MS provides higher- 
level resource management by implementing a consistent interface into various 
Grid scheduling systems, and thus hides much of the heterogeneity of the local 
schedulers that control the actual underlying resources. 

For our use case, we focus on the generic meta-scheduler recently proposed 
by Waldrich et a1 [20], whose design attempts to generalize on the type of 
resources that can be scheduled. This MS interfaces with multiple local sched- 
uler~,  negotiating with them advance reservation of resources based on user 
requirements that may include time and QoS constraints. The goal of the ne- 
gotiation is to determine time slots where the required resources are available 
for the requested start times of the application or workflow parts. The meta- 
scheduler implements two main fhnctionalities: (i) allocation of a single re- 
source for a single application for a fixed period of time, and (ii) co-allocation 
of multiple resources for the same fixed period of time for single or multiple 
applications. 
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In order to be able to participate in the negotiation, schedulers must satisfy 
at least the first of the following requirements: 

1 provide advance reservation of resources by offering job execution start 
and stop times; 

2 allow at least partial access to the local schedules, e.g. the available 
timeslots; 

3 allow for some control on existing reservations, e.g. by handling re- 
quests for cancellation, or time extensions. 

Thus, meta-scheduling includes the following main steps: 

discover schedulers that (i) manage resources that are compatible with 
the requirements of the Grid workflow, and (ii) satisfy (at least) the first 
of the remaining two requirements above; 

w negotiate suitable timeslots with the pre-selected schedulers; 

commit to the advance reservation, and interact with the schedulers to 
handle any subsequent change in the agreed-upon reservation. 

The meta-scheduler interacts with local schedulers through dedicated 
adapters that hide the heterogeneity of the schedulers' native interfaces. These 
adapters offer a uniform set of abstract operations to the meta-scheduler, which 
include requesting available start time slots for jobs, submitting scheduling re- 
quests for a specific time slot, and requesting the state of the current reserva- 
tion. 

The meta-scheduler described in [20] negotiates with the local adapters us- 
ing the WS-Agreement framework [I]. It has been integrated into the UNI- 
CORE Grid system, and its functionality has been demonstrated on the VIOLA 
testbed for advanced network services [12]. The meta-scheduler is accessible 
through UNICORE client plugins, which allow users to specify requests for 
co-allocated resources to run a distributed job on VIOLA. 

3.1 Limitations of the current meta-scheduling model 
The focus of the current implementation is on the meta-scheduling algo- 

rithm, rather than on the discovery and pre-selection of the eligible schedulers, 
and on the design of the adapters. However, the latter is a serious issue for 
the scalability of the proposed approach. Our study of meta-scheduling as a 
promising Semantic Grid use case stems from the observation that, while the 
adapters provide a uniform set of operations, no shared data model is available 
to describe a scheduler's set of capabilities. For example, there is no explicit 
and shared definition of scheduling concepts like timeslot or schedule queue, 
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or of capabilities like timeslot reservation change. Instead, these concepts are 
left implicit in the implementation of the adapters, which only expose a simple 
set of scheduling operations. 

This arrangement results in an architecture that is vulnerable to changes. 
Firstly, when the schedulers' capabilities change, they are not easily reflected 
in the adapters, which leave this knowledge implicit within their code. Sec- 
ondly, when the meta-scheduler requirements for the required capabilities 
change, eg due to changes in the meta-scheduling negotiation strategy or al- 
location decision algorithm, there is no shared vocabulary to describe the new 
requirements. 

Motivated by these observations, we have proposed [ l l ]  a semantic ap- 
proach to meta-scheduling on the Grid, which improves upon the current de- 
sign by: 

introducing a shared, explicit and lightweight but extensible semantic 
model to describe a scheduler's set of capabilities as well as its current 
state (which the meta-scheduler will need to query, see requirement 2). 
This is known as the Grid Scheduling Ontology; 

enhancing the adapters so that they can generate metadata regarding the 
schedulers' capabilities; 

enhancing the existing meta-scheduler as a Semantic Grid service, which 
is (i) aware of the available schedulers' semantics annotations, and (ii) 
able to exploit them to perform scheduler discovery and pre-selection. 

3.2 The Grid Scheduling semantic model 
The design of the enhanced meta-scheduler is based on a semantic model of 

Grid scheduling concepts. A detailed presentation of the model can be found 
in [I I]; what follows is a brief summary. 

At the core, the model includes concepts for schedulers, scheduler capabilities, 
scheduler reservation, and additional concepts to represent the state of a local 
schedule; each of these classes is the root of an extensible hierarchy. Fur- 
thermore, relationships amongst these root classes are established using object 
properties, used for instance to associate sets of capabilities to a scheduler. 

The model is defined as an ontology in OWL DL [12]; using the OWL DL 
operators, scheduler classes can be defined to contain all and only schedulers 
with a defined set of capabilities. For example, a limited-disclosure-scheduler, a 
subclass of scheduler, is the class of all schedulers that allow their local sched- 
ule to be queried. 

These intensional definitions provide a focused way to add semantic annota- 
tions to individual schedulers, which are instances of one or more of the sched- 
uler classes. In their simplest form, annotations include capabilities metadata, 
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which may state for instance that that "a scheduler is both capable of offering 
advance reservation, and allows queries on its current schedule". 

These annotations facilitate the schedulers' pre-selection by a meta- 
scheduler. More precisely, they allow a Description Logic reasoner [2] for the 
type of DL supported by OWL, to automatically classify a scheduler whose se- 
mantic annotations are known, as a member of one or more scheduler classes, 
defined intensionally as shown above. Once this classification has taken place, 
it is easy to show that scheduler discovery using this model amounts to (i) 
selecting from the ontology a scheduler class whose definition satisfies the se- 
lection criteria, and (ii) querying the ontology class to retrieve all the individual 
schedulers in the class. 

Casting this discovery pattern within the Semantic Grid context is straight- 
forward: local schedulers (LS) are Grid entities, and their semantic annotations 
can be defined as knowledge entities using the terminology introduced earlier; 
they are maintained in a metadata store as first-class Grid Entities themselves. 
Semantic bindings in this case embody the association between schedulers and 
their annotations; the bindings are exploited by the meta-scheduler, which be- 
comes a semantically -aware and -capable Grid service. 

Figure 3 shows how the meta-scheduler may make use of the S-OGSA se- 
mantic services suite presented in Section 4. In the next section, S-OGSA style 
interactions are described in a principled way, using the Grid meta-scheduling 
case study as an example. 

Glid Scheduling 

Figure I .  Casting meta-scheduling in the S-OGSA context 
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4. Service interaction patterns for the Semantic Grid 
The description given in Section 2 provides a static view of the S-OGSA 

architecture. Ultimately, however, the goal of provisioning and consuming 
semantics in the Grid is realized when S-OGSA services interact with one 
another and with Grid entities. We now present the two most relevant service 
interaction patterns that define these dynamic aspects of the Semantic Grid. 
The patterns follow the main steps in semantic information processing in S- 
OGSA, namely: 

Producing semantic annotations, i.e., ontology-referenced metadata for 
some Grid entity (resources or services), and representing those annota- 
tions as persistent knowledge entities. Grid entities and their annotations 
are thus both first-class Grid citizens, and can participate in a semantic 
binding; 

Resolving the semantic bindings in order to retrieve annotations for 
given Grid entities. 

These patterns describe the preparatory actions that any semantically-aware 
Grid service, such as the meta-scheduler and the adapters that are responsible 
for producing the metadata, would carry out before semantics can be exploited. 

The patterns are presented according to the well-known format discussed 
in [16]. The dynamics of each pattern are explained with UML sequence dia- 
grams while additional comments are used inside the sequence diagrams wher- 
ever the interaction is complex or needs some clarification, so as to make the 
diagrams as self-contained as possible. 

4.1 Grid entity annotation pattern 
Definition: The Grid entity annotation pattern encapsulates the functions 
needed to annotate Grid data resources or services, producing either raw or 
semantic metadata and store them persistently. By raw metadata we mean 
any annotation that can be associated to a piece of data, or, more generally, to 
a Grid entity. Semantic metadata, on the other hand, is metadata that carries 
explicit references to the semantic models, i.e., reference ontologies, required 
for its interpretation. In this work, we are only interested in the latter. When 
annotations are stored in a Metadata store they become Grid Resources since 
they are given a unique identifier. From this set of annotations, those that link 
Grid Entities with Knowledge Entities are called Semantic Bindings. 

Example: The capability profile of a scheduler can be expressed using 
terminology from a Grid Scheduling Ontology (GSO), so that any user who 
has access to the ontology may be able to interpret the profile. The LS (Local 
Scheduler) Semantic Adapter shown in Figure 3 supervises and monitors one 
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local scheduler and produces semantic annotations regarding its capabilities 
and state changes. Annotations are used by the metascheduler for service 
pre-selection. 

Context: Generation and storage of semantic metadata for Grid entities. 

Problem: The use of intelligent reasoning mechanisms requires semantic 
metadata. 

Solution: The annotation process can be either done manually, semi- 
automatically or on-demand without any user interaction. This pattern is 
concerned with automatic and semi-automatic annotations according to which 
an Annotation Service is able to fetch reference ontologies from an Ontology 
Service, and use them to create semantic annotations that can be interpreted 
using those ontologies. The outcome of the annotation is persistently stored 
using the Metadata Service. 

Dynamics: The annotation process is triggered by a requestor that wants to 
annotate a piece of data. First, the annotation service needs to obtain a ref- 
erence to a suitable ontology. For this, it invokes the Ontology Service which 
returns a handler to this ontology. During the annotation process this handler is 
used to retrieve ontology concepts and properties from the Ontology Service. 
Optionally, the Annotation Service may also retrieve existing annotations from 
the Metadata Service, for reference or for updating purposes. When the an- 
notation process finishes, the annotation is persistently stored in the Metadata 
Service and assigned a unique identifier. The annotation has now become a 
special type of Grid Entity that links Knowledge Entities (i.e. the ontology) to 
Grid Resources. This Grid Entity is called a Semantic Binding and can be re- 
trieved from the Metadata Service using the aforementioned unique identifier: 
the Semantic Binding ID. 

Associated to the annotation is also, potentially, its provenance metadata, 
describing the annotation process itself (when it was performed, by whom, 
the external resources it is based on, and so forth). Note that this pattern is 
only concerned with S-OGSA service interactions, rather than with the spe- 
cific annotation process, which may vary depending on the domain of the Grid 
resource and the purpose of the annotation. 

4.2 Metadata and Knowledge querying Pattern 
Definition: This pattern allows an application to retrieve semantic bindings 
andlor query the semantic metadata associated to a set of Grid Entities, with 
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Figure 2. Data annotation interaction patterns 

the help of the metadata and ontology services. 

Example: The capabilities required for a scheduler to participate in advance 
reservation are represented by one or more scheduler classes in the ontology. 
As we have shown, eligible schedulers are all and only the instances of those 
classes. Retrieving those instances may require reasoning capabilities, as well 
as access to the metadata storage. 

Context: Semantically aware Grid services that need to retrieve semantic 
bindings in order to perform their function. 

Problem: Exploiting semantic bindings involves retrieving semantic metadata 
associated to some Grid entity. 

Solution: Since semantic metadata can be implemented in a formal language 
(e.g., RDF Schema, OWL), reasoning techniques can be used in order to 
retrieve the metadata. Depending on the reasoning mechanisms available for 
the formal language in which the metadata is implemented, different types 
of inferences will be available, from the retrieval of subclasses or ancestors 
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of a given class to the classification of sets of individuals according to their 
most specific class. During the query answering process, we can exploit the 
reasoners capabilities in order to infer new facts by aggregating knowledge 
already stored in the Metadata Service. 

Dynamics: The behaviour of the Metadata Querying Pattern is shown in Fig- 
ure 3. Retrieving raw metadata is straightforward. For semantic metadata, 
the metadata service uses the ontology service for expanding or restricting the 
queries that are sent in the message, such as adding subclasses of the concepts 
used in the query, or detecting inconsistencies in the query before they are 
issued to the metadata service. 

5. Discussion 
In this paper we have provided a dynamic view of the Semantic Grid by 

focusing on some of the most common interaction patterns among the seman- 
tic middleware components identified in S-OGSA. Our coverage of patterns 
here is far from being exhaustive and there are several variations to undertak- 
ing the two core Semantic Grid functionalities covered in this paper, namely 
annotation and metadata querying. 

The annotation (or metadata generation) pattern that we have covered dis- 
plays the case, where metadata for grid entities is generated semi-automatically 
and on-demand, which in the illustrative scenario corresponds to the LS Se- 
mantic Adapter's annotation of a scheduler that has recently joined the VO, or 
to a scheduler that has just changed its state. On-demand and semi-automatic 
characteristics require the metadata generation pattern to include phases for 
discovery of annotation resources (e.g. ontologies). 

Annotation could also be done automatically and initiated dynamically as 
Grid entities come into existence. Cases where VO membership of Grid 
entities change frequently; where most middleware activities heavily rely 
on existence of grid entity metadata, or where metadata represents histori- 
cal/contextual information of a Grid entity (e.g. provenance), all necessitate 
annotation to be a sustained activity. In the sustained annotation case, the 
resource discovery phase is generally skipped, and the annotation tooling is 
configured to use a specific set of resources and methods. 

The metadata querying patterns we have covered demonstrated capabilities 
ranging from simple retrieval of raw metadata to expansion of semantic meta- 
data via ontological inference. 

The patterns are intended to be the building blocks of more complex inter- 
actions that build-up activities of middleware and applications in the Semantic 
Grid ecosystem. For instance, in our illustrative scenario, the motivation for 
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Figure 3. Metadata storage interaction patterns 

providing semantic descriptions for local schedulers came from the need for 
the Semantic Discovery activity. 

Such semantically-enhanced activities are also currently being investigated 
in fields such as the Semantic Web (SW) and Semantic Web Services (SWS). 
Work in these areas investigates i) suitable technologies and models for 
semantically describing resources in their respective distributed environment 
(e.g., the Web or the Web services) and ii) how these semantic descriptions 
can be exploited in the context of a particular activity with special focus 
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on discovery, negotiation and composition. There are certain aspects of the 
Grid that appear to have higher priority when compared to other distributed 
environments. These aspects and their effect on semantics can be summarized 
as follows: 

Dynamism and Dependency Management. Unlike other distributed en- 
vironments, the resources in the Grid are very dynamic. Resource state 
changes frequently, and information regarding the state of the system has 
a definite lifetime. Grid information systems aggregate resource state 
information (generally represented as XML based resource properties) 
into index services in order to provide an aggregate system snapshot and 
enable discovery of resources based on their properties. To the extent that 
semantic metadata adds to resource state information, managing the lifetime 
of the semantic bindings becomes important. These issues, which have so 
far attracted little research attention in the semantic web (SW) and seman- 
tic web services (SWS) communities, need to be addressed in the Grid context. 

Trust and Consistency. Building a well-controlled resource sharing environ- 
ment is the main aim in the Grid. Introduction of metadata and knowledge into 
the Grid brings about the issues of trust-ability and consistency of these. These 
issues are also under investigation in the SW and SWS communities [7]. The 
uptake of semantics in the Grid depends on existence of usable models and 
frameworks in this area. 

6. Future Directions 
Our current S-OGSA architectural descriptions, including their static and 

dynamic aspects, do not prescribe any semantic technology and content for 
the realization of semantic entities and services in the Grid. We are aware 
that the guidance of S-OGSA would increase if it is accompanied with 
some generic content and experience reports (e.g. best practices) on particular 
technology choices. Therefore, as part of our future work we will be providing: 

Meta-models for knowledge and metadata. In order to facilitate interop- 
erable use of the S-OGSA entities in a Grid environment we need to provide 
minimal information on what they are. This will be done by modelling the 
different types of realizations for Semantic Bindings (e.g., RDF, natural 
language) and Knowledge Entities (e.g., ontologies, rule bases). 

Profiles for S-OGSA. In this chapter we have demonstrated S-OGSA with a 
scenario where Description Logic based knowledge and RDF based metadata 
representations have been used to provide semantic capability descriptions for 
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schedulers and their discovery through use of a DL classifier. The choice of re- 
alization technology for knowledge and metadata modelling depends on many 
factors including the nature of the problem at hand, the characteristics of the 
candidate semantic technologies and the availability and maturity of their as- 
sociated tools/services. Returning to our example in this chapter, the use of an 
open-world based DL classifier proved suitable for discovery of distributed re- 
sources. This however should not imply that these particular technologies are 
fit for the solution of other Grid problems (e.g. policy reconciliation, agree- 
ment negotiation). In fact closer investigation of such problems [7]has shown 
that semantic technologies other than DL and RDF could be ideal for tailoring 
solutions to these problems. Based on this observation we would like to pro- 
vide profiles for S-OGSA that demonstrate exploitation of different semantic 
technologies for the solution of different Grid problems. 
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Abstract A general model for the representation of scientific study metadata does not ex- 
ist. The e-Science enablement of the data holdings of CCLRC requires such a 
model to allow access to the data resources of the facilities in a uniform way. By 
proposing a model and an implementation, the adoption of such a system would 
aid interoperability of scientific information systems in the organisation and 
form a specification of the type and categories of metadata that studies should 
capture about their investigations and the data they produce inside and outside 
of CCLRC. This allows further exploitation of scientific Studies and associated 
datasets, ease citation, facilitate collaboration and allow the easy integration of 
pre-Grid metadata into a common Gridte-Science enabled scientific information 
platform. In this paper, we describe a science metadata model developed at 
CCLRC, with its motivation, overall design, usage and future development. 
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1. Introduction 
Scientific research projects have two major outputs: publications, in jour- 

nals and other forms of literature; and the data sets generated during the course 
of observations and experiments. These are then subject to analysis and visu- 
alisation to generate the results reported in the literature. Traditionally, science 
has concentrated on the former output as the major means of disseminating 
the results of research, whilst access to the latter has been restricted to small 
groups of individuals closely associated with the original researcher. However, 
modern distributed information systems offer the opportunity to provide access 
to both outputs to a wider audience. This allows other researchers to verify the 
results of the analysis, and also to reuse the data-sets to carry out secondary 
analysis, possibly in combination with results from elsewhere, to produce new 
insights without the cost of repeating the original experiment. 

These data resources are typically stored in many file systems and databases 
physically distributed throughout organisations with, at present, no uniform 
way of accessing or searching them to find what data is available. It is often 
necessary to open and read the actual data files to find out what information 
they contain. There is little consistency in the information which is recorded 
for each data-set held and sometimes this information may not even be avail- 
able on-line, being recorded only in experimenters' logbooks. This situation 
creates the potential for serious under-utilisation of these data resources or 
for wasteful re-generation of data. It also hinders the development of cross- 
discipline research, as this requires the location and combination of data across 
traditional disciplinary boundaries. 

Metadata is seen as a key factor in the archiving and distribution of scientific 
data. Through the use of good metadata models, defined at the appropriate 
level, scientists can publish and share data, and allow the results of experiments 
and studied to be browsed and searched. Appropriate metadata thus encourages 
reuse of data within and across scientific disciplines. 

The CCLRC Scientific Meta-Data Model (CSMD) is a study-data orientated 
model [I]. It seeks to capture the high level information pertaining to scientific 
studies and the data that they produce. As a base minimum the CSMD forms 
a specification of the types of information a scientific study should maintain in 
order to be useful to parallel and follow on studies as well as to the researchers 
themselves in later years (e.g. loss of original data, check previous results 
and perform some new form of analysis). The CSMD supports indexing at 
various levels of granularity from the study to investigations inside the studies 
to data collections and atomic data objects (e.g. files and databases, including 
query tables). The indexing mechanism supports keywords and taxonomic 
classification while including support for reference to controlled vocabularies. 
The latest version is version 2 [2]. 
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The CSMD is being used as the core metadata carrier for the Grid enabling 
of the world class large scale scientific facilities at CCRLC covering area such 
as Neutron Science, Lasers and Synchrotron Science. A generic model cover- 
ing all these requirements did not previously exist, and therefore CSMD was 
developed as a core component of any facility Data Grid aiding collaboration, 
exploitation and citation of scientific studies across the virtual organisation. 

In this paper, we briefly describe the notion of a Science Data Portal as 
developed in CCLRC. We go on to describe the metadata model used in the 
data portal, both in its overall structure, and some of the details, including an 
example. In future developments, we discuss how this metadata model can be 
related to metadata formats for cataloguing publications. 

2. A Science Data Portal 
The concept of a data portal [8-1 Ilhas been developed as a tool for browsing 

and searching the contents of distributed scientific data sources across a variety 
of scientific domains. Such a system has potentially a wide spectrum of users 
from scientists working in related fields wanting to find information on a topic, 
through experimenters interested in accessing and analysing their own data, to 
the data curators based at the facilities themselves who want to use the portal 
as a data management tool. 

A data portal system has been developed within CCLRC [8-91 to enable 
researchers to access and search metadata about data resources held at the ISIS 
and SRS facilities within CCLRC. The system being developed has three main 
components: a web-based user interface; a metadata catalogue; and generic 
data resource interfaces, integrated using standard Web protocols. The system 
can offer a distributed interface to scientific data resources both inside and 
outside CCLRC. 

The data resources accessible through the data portal system may be located 
on any one of a number of data servers. Interfaces between these existing data 
resources and the metadata catalogue are being implemented as web services 
based wrappers that will present the relevant metadata about each resource to 
the catalogue so it appears to the user to be part of the central catalogue.. These 
wrappers are implemented as XML encoding of the specific metadata relating 
to that resource using the metadata model schema; wrappers are an established 
technique for providing such interfaces 1151. 

2.1 A Metadata Catalogue 

In order to construct a generic data portal, including mechanisms for cata- 
loguing, browsing and accessing data resources across a wide number of sci- 
entific domains, a generic metadata model for scientific data is needed. 



138 KNOWLEDGE AND DATA MANAGEMENT IN GRIDS 

There are many metadata formats supporting specific data sources and do- 
mains such as CERA which has been developed for earth observation data [I31 
and the NERC Datagrid metadata model for environmental data [14]. Also, 
there are general models of metadata such as the Dublin Core [12] for discov- 
ery information for library resources. However, there has been few attempts 
to provide a metadate model to cover the generic nature of the scientific data 
holdings, similar to the Data Documentation Initiative [16] developed for the 
social sciences. Such a metadata for science has the requirement of being both 
more specialised than general metadata models , whilst being more general 
than metadata formats for specific domains in science, and covering a large 
range of metadata types, as defined classifciations of metadata such as [17]. 
The CSMD is designed to be such a generic model for science data holdings. 

When the metadata model is used in a particular domain, more detailed 
metadata may be provided. A mechanism is needed to access such metadata in 
an interoperable way from the generic scientific metadata while preserving the 
meaning, and allows deeper searches into the domain specific metadata. Thus 
the CSMD is designed to be extensible for particular domains of interest. 

The logical structure of the metadata in the catalogue is based on the scien- 
tific metadata model. Figure 1 gives a breakdown of the metadata model into 
its six major components. The study metadata corresponds to associative de- 
scriptive metadata, the access condition to associative restrictive metadata, data 
description to a form of schema metadata (describing how the data is laid out in 
the file structure), data location to navigational metadata, and related material 
to associative supportive metadata. Additionally, keywords can be assigned 
from controlled vocabularies for topic based browsing. These components are 
considered in more detail in later sections of this paper. 

The model is necessarily very generic to cater for a large range of differing 
types of data. Specialisations of this metadata format will be used for each 
domain, and generic queries can be then devised to search over the common 
views on the metadata. The model uses a hierarchical model of the struc- 
ture of scientific research programmes, projects and studies, and also a generic 
model of the organisation of data sets into collections and files. This allows 
a flexible structure to be developed, relating different data sets and their com- 
ponents together. For example related sets derived from one another from raw 
data through data reduction and analysis to a final result; alternative and failed 
analyses can also be recorded, as well as calibration data sets, against which 
results are measured. 

The metadata catalogue is implemented using a standard relational database. 
Once the specific data sets required by the user have been identified using 
the available metadata, the catalogue provides links to the files holding the 
actual data. Users can then use these links to access the data with their own 
applications for analysis as required. 
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Keywords associated with the study. Provides an index to 
the subject of Ihe study, possibly from a controlled vocabulary. 

Provenance of the study. Descr~bes who did the 
study, what was done, why and when. 

Conditions of Use. Provides information on who can 
access the data, any requirements of the users, and 
how the data can be accessed. 

Detailed description. Provides information on how 
the data data holdings are organised into data 
collections and atomic data objects. 

Locality of the data. Provides a navigational 
structure lo where the data can be found. 

References. Provides links into the supporting 
literature, other studies, and community information to 
give context for the study. 

Figure 1. The Top-level Components of the Metadata Model 

3. The Metadata Structure 

The metadata within the general metadata structure is laid in a series of 
classes and subclasses. We do not describe the whole model in detail for rea- 
sons of space, but rather select some areas of particular interest. 

3.1 Modelling Scientific Activity 

The data model attempts to capture scientific activities at different levels: 
the main unit is the Study, which lies in a context of a science research pro- 
gramme, governed by policies. Each study has an Investigator that describes 
who is undertaking the activity, and the Study Information that captures the de- 
tails of this particular study. Studies include particular scientific investigations. 
The general structure of the metadata is given as a UML diagram in Figure 2. 

Policy are company or government policies which initiate Programmes of 
work. 

Programmes are related studies that have a common theme which are usu- 
ally funded and resourced directly or with an intermediary organisation 
under the rubrick of the programme. The UK e-Science Programme is 
an example of this. 
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Figure 2. Model of the hierarchy of scientific data holdings 

Studies (sometimes referred to as Projects): Studies investigate some as- 
pect of science and have a Principal Investigator and/or institution, co- 
investigator~ and are usally funded. e.g. single projects such as EPSRC 
projects, or application for beam time on ISIS. 

Investigations are studies or parts of studies that have links directly to data 
holdings. More specific types of investigations include experiments, 
measurements or simulations. 

Experiments: investigations into the physical behaviour of the envi- 
ronment usually to test an hypothesis, typically involving an instru- 
ment operating under some instrumental settings and environmen- 
tal conditions, and generating data sets in files. E.g. the subjection 
of a material to bombardment by X-Rays of known frequency gen- 
erated by the Synchrotron Radiation Source with the result diffrac- 
tion pattern recorded. 

Measurements: investigations that record the state of some aspect of 
the environment over a sequence of points in time and space, us- 
ing some passive detector, e.g. the measurement of temperature at 
a point on the earth surface taken hourly using a thermometer of 
known accuracy. 



A Metadata Model for the Discovery and Exploitation of Scienti$c Studies 141 

Simulations: investigations that test a model of part of the world, and 
a computer simulation of the state space of that model. This will 
typically involve a computer program with some initial parame- 
ters, and generate a dataset representing the result of the simula- 
tion. E.g. a computer simulation of fluid flow over a body using a 
specific program, with input parameters the shape of the body, and 
the velocity and viscosity of the fluid, generating a data set of fluid 
velocities. 

Each investigation has a particular purpose and uses a particular experimen- 
tal set up of instruments or computer systems. Experiments may be organised 
within larger studies, which themselves may be organised into programmes of 
linked studies. 

Classes within the model have several fields. For example, investigator has a 
name, address, status, institution and role within the study. For reasons of space 
we cannot provide a complete description of all the available classes within the 
metadata model. For illustration, we consider the Study class. Within a Study, 
there are several fields, as in Table 1. 

Funding Source of funds of the study, including grant-funding body. 

Time Date, time and duration of study. 
Can be either a point time and date, or a begin time and end time. 
We expect it to be in a standard format: dd/mm/yyyy for dates; hh:mm:ss for 
times. 

Purpose Description of purpose of study, including: 

w Free text abstract of investigation 

Keywords categorising subject of investigation, preferably selected 
from a controlled vocabulary. 

Study type: a field that can be used to indicate the type of study being 
undertaken. 

Status Status of study, (not-started, in progress, complete). 

Resources Statement of the resources being used, e.g. which facility. 

Table 1. Study Description Class Fields 

3.2 Modelling scientific data holdings 

Investigations have datasets associated with them; similarly, in CSMD, each 
investigations in associated a set of metadata describing the data holding (DH) 
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associated with that investigation. The metadata format given here is designed 
for use on general scientific data holdings. Thus, data holdings have three 
layers: the experiment, the logical data, and the physical files. The overall 
structure of the model for scientific data holdings is given in Figure 3. Data 
holdings are considered as hierarchies, with Data Sets, generalised to Data 
Collections (DC), broken down into individual logical Data Files, generalised 
in the model as Atomic Data Objects (ADOs) as they may not be held in file- 
store, but in for example databases. At each level of granularity, metadata can 
be provided giving representation information [IS] at the appropriate level of 
the data holding. 

An investigation is a study that generates raw data. This raw data can then be 
processed via a set of tools, forming on the way intermediate data sets, which 
may or may not be held in the data holding. The final processing step generates 
the final analysed data set. At each stage of the data process stores data in a 
set of physical files with a physical location. It is possible that there may be 
different versions of the data sets in the holding. In a general data portal, all 
stages of the process should be stored and made available as reviewers of the 
data holdings may wish to determine the nature of the analysis performed, 
and other scientist may wish to use the raw data to perfom different analyses. 
Thus type markers ('raw', 'intermediate', 'final') need to be kept with DCs and 
ADOs and relationships between the DCs of different types recorded. 

Thus each data holding takes the form of a hierarchy: one investigation gen- 
erates a sequence of logical data collection, and each data collection is instanti- 
ated via a set of physical objects. The design of the metadata model is tailored 
to capture such an organisation of data holdings. A single metadata record in 
this model can provide sufficient metadata to access all the components of the 
data holding either all together or separately. 

This models distinguishes between the logical data holding, describing the 
data objects and their structural hierarchy, and the data location. The data loca- 
tion provides a mapping between the URIs used in the data definition compo- 
nent of the metadata model, and the actual URLs of the files. This can provide 
facilities for describing mirror location for the whole structure, and also for 
individual files. 

3.3 Parameters 
Parameters can be associated with either Data Holdings, Data Collections, 

or ADOs. The same metadata item is used to represent either experimental 
conditions and measured items stored as data points in the data collection, but 
are rather distinguished via a parameter type qualifier ('fixed' or 'measured'). 
Each parameter has a set of fields describing its value (if fixed in as an input 
parameter), the units of measurement used to qualify the data points, the range 
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Data- Set I [Raw] Data- %t 2 [Infer] Data-Set 3 [Find ] 

Figure 3. Model of the hierarchy of scientific data holdings 

of values over-which a parameter can take and the error margin expected on 
the value. Additionally, there is support for parameter aggregation. 

3.4 Other metadata components 
Additionally to the provenance and data holding components of the meta- 

data record in CSMD, there are also components for recording other aspects of 
the information pertinant to a study. We discuss them here briefly. 

Topic. A top-level topic can be associated with an study. This can describe 
which discipline the study falls under (e.g. Chemistry, Crystallography), and 
also some more discipline specific keywords, which can be selected from an 
associated controlled vocabulary; the metadata record will also track which 
controlled vocabulary is being used. This component in intended for use as a 
index for searching and browsing through the metadata catalogue. 

Access control. Access is controlled by the access entry in the metadata 
record; how this is actually done is dependent on the data holder. Typically, it 
will contain a list of users or groups who are allowed access to the metadata 
and data, or a pointer to an access control system which contains such data for 
this study. For example, there might be an access type, with settings such as 
open, on application, restricted, commercial in confidence. This may be given 
in conjunction with explicit instructions on how to access the data, and who 
to contact. Access control should be reflected throughout the metadata model 
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allowing different granularity of access control. For example, whilst a study 
overall maybe public, certain parts of the data holding (perhaps unprocessed 
files) maybe restricted to the investigators themselves. 

Related Materials. One or many links and or textual descriptions of ma- 
terial related to this study e.g. earlier studies or parallel studies. Also, this 
component would be the appropriate place to link to associated publications 
derived from the dataset, publications which are cited by the investigation, and 
supporting material such as glossaries and dictionaries. 

4. Metadata Conformance 
The full CSMD metadata model is very detailed and using it to its full po- 

tential requires a great deal of metadata to be entered. This is a time consuming 
process, requiring a great deal of effort on the part of the experimentor andlor 
facility administrator, and in practice, the application of the metadata may not 
require the full level of detail to support an desired application. Thus we have 
defined levels of conformance for the CSMD, as detailed in Table 2. 

1 Study and Investigation metadata with indexing at the Study level 
2 Level 1 + DataHolding metadata (i.e. DataSets and DataObjects) 
3 Level 2 + related material, Access condition, indexing to data collection levels 
4 Level 3 + indexing to data object level and data object parameter information 
5 All metadata components are filled as L4 + funding, resources used, facilities used etc 

Table 2. CSMD Conformance Levels 

Conformance level 1 provides "search metadata" similar to that typically 
provided by simple library or publication metadata such as Dublin Core. 
CSMDs mapping to Dublin Core is discussed in [19]. As the level of con- 
formance is increased, first information about the data holding is included, 
allowing the data collections to be searched in detail. Then contextual and ac- 
cess control information is added, allowing data collections to be accessed via 
the portal. Levels 4 and 5 then add further detail to the model for more com- 
plex exploration of the data holdings. Currently, the CCLRC Data Portal is 
conformant to level 2 with additionally more detailed parameter information. 

5. An Example 
As an example of this scientific metadata model, consider the SXD infor- 

mation from the ISIS Neutron Spallation Source. A study in this case is an 
application for beam-time, uniquely identified with an RB number, which cov- 
ers a programme of investigations, and is described by a description of the 
purpose in the original study application. This programme is in turn broken 
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down into a series of individual investigations, each of which are experiments 
on the SXD detector. Each investigation may have a sequence of runs, each 
generating a data set. Each run keeps the major parameters of the experiment 
the same (e.g. temperature of study), but alter some other parameter (e.g. ori- 
entation of the sample in the target). This information needs to be preserved in 
the metadata model. 

For example an investigation with name Benzene, variable temperature 
study: 150K, would have a user, purpose and date and time information as- 
sociated with it. It should have a unique ID (not necessarily the RB number 
as that may relate to a programme of investigations), and it will have a set of 
RAW data files associated with it, for example: files SXD10091, SXD 10092, 
SXD10093, SXDlOO94, SXD10095. There may also be a set of intermediate 
SXD files, and also a set of processed final files in standard data formats for 
specific programs, such as .HKL, .INS and .RES files. The system should keep 
track of the relationship between files, and record which have been processed. 
We give a sample of the fields in the metadata. We use #classname to repre- 
sent cross-references between classes. Thus the metadata of the experiment is 
represent as follows. 

Experiment 
StudyID SXD 1009 1 
Study Name Benzene, variable temperature study: 150K 
Investigator #investigator 
Study Information #study-information 
Data holder #data-holder 
Instrument #instrument 
Conditions #conditions 

The Investigator gives details of the people involved in the study. 

Investigator 
Name Anne X. Perimenter 
Institution University of Somewhere 
Status Lecturer 
Role Principal Investigator 
Address Dept of Organic Chemistry, Univ of Somewhere, Somewhere, UK. 

Study information gives the information on this study. 

Study Information 
Funding Source EPSRC 
Time 111 1/00, 11.45 
Purpose #purpose 
Status Complete 
Resources Beam time on ISIS using the SXD, for 1hr on 111 1/00 
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The Purpose itself may have several fields. 

Purpose 
Abstract To study the structure of Benzene at a temperature of 150K. 
Keywords Chemistry: organic: benzene: denatured benzene, C6H6, C6D6 

The data holder refers to the institution principally responsible for holding 
the data. 

Data Holder 
Institution ISIS, CCLRC Rutherford Appleton Laboratory 

The conditions in this case just record the temperature under which the Sam- 
ple has been studied. 

Conditions 
Temperature 150K 

This will also have to accommodate different organisations of files, not just 
the raw/intermediate/final as given in the ISIS model. Files may also be in 
several different locations, separating out the identity of data sets from the 
location. Giving filetypeldirectory pairs does this: 

Data location 
Data holding loca- ftp://ftp.isis.rl.ac.uk/SXD/ SXD1009/ 
tions 

http://www.dooc.uos.ac.uW-perimenterlbezenel 
Data set Directo- (RAW, raw/), (Intermediate, SXD/), (HKL, HKLI), (INS, INS/), 
ries (RES, RES/). 

The data description would break down into a hierarchy of entries. Firstly 
the top-level entry, which contains references to the data sets of the study. 

Data description 
Data Sets #raw, #intermediate, #processed 

Then the raw data set would have references to the metadata for each file 
(not the file itself): 

Raw 
Dataset type RAW 
Files #SXD 1009 1 .RAW, #SXD 10092.RAW, #SXD 10093 .RAW, 

#SXD 10094.RAW, #SXD10095.RAW 
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Each file would have a metadata entry, giving its URI: 

SXD10091.RAW 
URI SXD 1009 1 .RAW 

There will also be a dataset entry for intermediate files and processed files, 
omitted for brevity. The data set can be represented as a XML model, and can 
be displayed in the CCLRC Data Portal. 

6. Conclusions and Future Development 
The CCLRC Data Portal has been successfully piloted within the context 

of the e-Science programme at CCLRC, using sample data from the ISIS and 
SRS facilities at CCLRC. The CSMD has also been used on a variety of UK 
e-ScienceIGrid enabling projects as the premier metadata model, including 
the NERC e-Minerals [3], EPSRC e-Materials [4], and the EPSRC Integra- 
tive Biology [5] projects. Further, it has been used as a template on a vari- 
ety of other projects in the e-Science field; for example, the EPSRC MyGrid 
project adopted version 1 and enhanced the provenance information [6]; and 
the JISC eBank project has developed the format for crystallography data [7]. 
The model has proven adaptable to a wide variety of situations. 

The major current activity is to roll out the data portal onto the ISIS ICAT. 
This will cover a twenty year back catalogue of experiments on the ISIS Neu- 
tron Spallation Source. This projects is using a Relational Schema based on 
version 2 of the CSMD. Further, the EPSRC CCPl (Collaborative Computa- 
tional Project in Quantum Chemistry) is assessing CSMD for metadata needs 
on their Grid Data Management Middleware. Future work includes using the 
model and data portal within other facilities at CCLRC, such as the Diamond 
Light Source, a new x-ray synchrotron, and the Central Laser Facility. 

A common metadata format for scientific data also allows the possibility of 
providing a single point of access to both the major outputs of science: data and 
publications. By using the common or interoperable features of the generic sci- 
entific metadata model, we allow the possibility of combined searches across 
both domains, or alternatively, using the metadata from one domain (say scien- 
tific publications) to search and access appropriate information from the other 
(say retrieve relevant data sets to test the claims of the publication). 

The current work under the JISC funded CLADDIER project [20] seeks to 
integrate the use of persistent Identifiers across data and publications using 
existing Publication institutional repository systems, inparticular the CCLRC 
ePubs system. In order to have a common search mechanism over library and 
data portals, a base level of simple metadata is required; this can be provided 
by Dublin Core and as we have seen, CSMD conformance level 1 can provide 
Dublin Core metadata. The Related Material component of the metadata can 
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record citation of data by publications and conversely the citation of publica- 
tions by the data, to give context to the study. Common controlled vocabular- 
ies can be used to index both data and publications. Further issues arise when 
we use metadata at different levels of abstraction as in the FRBR model [21] 
(which appears to have a close relationship to the notions of data holding in 
CSMD) and versioning of data holdings for citation in a publication. 

Future considerations on the use of the CSMD will consider the require- 
ments of Digital Curation (preservation, enrichment and availability) upon the 
metadata record; metadata population strategies in the scientific process; and 
re-expression as an ontology. Experience to data has shown that the CSMD 
covers a wide area of scientific research work in sufficient detail in a robust 
yet usable fashion. We would anticipate that the model would be suitable as a 
common core for other more domain specific metadata models; ultimately to 
allow rich discovery and exploitation of the scientific record into the long-term 
hture. 

Acknowledgments 
We would like to thank Kerstin Kleese van Dam, and the other members of 

the CCLRC e-Science Data Management team. 

References 

[ l ]  S. Sufi, B. Matthews, K. Kleese van Dam. An Interdisciplinary Model for the Repre- 
sentation of Scientific Studies and Associated Data Holdings. UK e-Science All Hands 
meeting, Nottingham, England, 02-04 Sep 2003 

[2] S. Sufi, B. Matthews CCLRC Scientific Metadata Model: Version 2. DL Technical Re- 
ports, DL-TR-2004-001,2004. http:Nepubs.cclrc.ac.uWwork-details?w=30324 

[3] L. Blanshard, K. Kleese van Dam, M. Dove Environment from the Molecular Level e- 
Science project and its use of CLRC's Web Services based Data Portal Proceeding of the 
1st. International Conference on Web Services, 2003. 

[4] L. Blanshard, R. Tyler, K. Kleese van Dam. eMaterials: Integrating Grid Computation and 
Data Management Services. UK e-Science Programme All Hands Meeting (AHM2004), 
Nottingham, 2004 

[5] D. J. Gavaghan, A. C. Simpson, S. Lloyd, D. F. Mac Randal, D. R. S. Boyd. Towards a 
Grid infrastructure to support integrative approaches to biological research Phil. Trans. 
Royal Society Series A 363 1829-1841,2005 

[6] N. Shaman, N. Alpdemir, J. Ferris, M. Greenwood, P. Li and C. Wroe. The myGrid 
Information Model. UK e-Science All Hands Meeting 2004 Nottingham, England, 2004. 

[7] S. J. Coles, J. G. Frey, M. B. Hursthouse, M. E. Light, A. J. Milsted, L. A. Can; D. 
DeRoure, C. J. Gutteridge, H. R. Mills, K. E. Meacham, M. Surridge, E. Lyon, R. Heery, 
M. Duke, M. Day. An e-Science environment for service crystallography -from submis- 
sion to dissemination. Journal of Chemical Information and Modeling, Special Issue on 
escience, 2006. 



A Metadata Model for the Discovery and Exploitation o f  Scientific Studies 149 

[8] J V. Ashby, J. C. Bicarregui, D. R. S. Boyd, K. Kleese van Dam, S. C. Lambert, B. 
M. Matthews, K. D. O'Neill. The CLRC Data Portal British National Conference on 
Databases, 2001. 

[9] J .V. Ashby, J. C. Bicarregui, D. R. S. Boyd, K. Kleese van Dam, S. C. Lambert, B. 
M. Matthews, K.D. O'Neill. A Multidisciplinary Scientific Data Portal. HPCN 2001: 
International Conference on High Performance and Networking Europe, Amsterdam, 
2001. 

[lo] C. Houstis, S. Lalis. ARION: An Advanced Lightweight Software System Ar- 
chitecture for accessing Scientific Collections, Cultivate Interactive, no.4, 2001. 
http:Nwww.cultivate-int.org/issue4/arion/ 

[I 11 J. Ryssevik, S. Musgrave. The Social Science Dream Machine: Resource discovery, anal- 
ysis and delivery on the Web, Proceedings of the the [ASSIST Conference, Toronto, 1999. 
http://www.nesstar.org/papers/iassist~0599.html 

[12] The Dublin Core Metadata Initiative, http:l/www.dublincore.org. 

[13] H. Hoeck, H. Thiemann, M. Lautenschlager, I. Jessel, B Marx, M. Reinke. The CERA 
Metadata Model. Technical Report No. 9, DKRZ - German Climate Computer Centre, 
1995, http://www.dkrz.de/forschung/reports/report9/CERA.book.html 

[14] K. O'Neill, R. Cramer, M. Gutierrez, K. Kleese van Dam, S. Kondapalli, S. Latham, B. 
Lawrence, R. Lowry, A. Woolf. A specialised metadata approach to discovery and use of 
data in the NERC DataGrid Proceedings of the UK. e-science All Hands Meeting, 2004. 

[IS] C. Baru, A. Gupta, V. Chu, B.Ludscher, R. Marciano, Y. Papakonstantinou, P. Velikhov. 
XML-Based Information Mediation for Digital Libraries Digital Libraries '99, 1999. 
http://www.npaci.edu/DICE/Pubs/dl99-demo.pdf 

[16] The Data Documentation Initiative. http:/lwww.icpsr.umich.edu/DDI/ 

[17] K. G. Jeffery. Metadata. Information Systems Engineering, S. Brinkkemper, E. Linden- 
crona, A. Solvberg (Eds), Lecture Notes in Computer Science, Springer Verlag, 2000. 

[IS] Reference Model for an Open Archival Information System (OAIS). CCSDS 650.0-B-1 
Blue Book. Issue I. IS0 14721:2003,2002. 

[19] B. M. Matthews, M. D. Wilson, K.Kleese van Dam. Accessing the Outputs of Scientific 
Projects In Proceedings of CRIS 2002, Current Research Information Systems, Kassel, 
Germany, 2002. 

[20] CLADDIER http://claddier.badc.ac.uk/ 

[21] Functional Requirements for Bibliographic Records, International Federation of Li- 
brary Associations and Institutions, UBCIM Publications New Series Vol 19, 1998. 
http://www.ifla.org/VII/s 13/frbr/frbr.pdf 



IDEAS FOR THE PROVISION OF ONTOLOGY 
ACCESS IN GRID ENVIRONMENTS 

Miguel Esteban Gutikrrez and Asunci6n G6mez-Pkrez 
Ontology Engineering Group 
Universidad PolitPcnica de Madrid 
Campus de Montegancedo s/n, 28660, Boadilla del Monte 
Madrid, Spain 

mesteban@fi.upm.es 

asun@fi.upm.es 
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1. Introduction 

The increasing use of semantic technologies has reached almost every 
computer-related field, including the Grid. The next generation Grid should 
virtualise the notion of distribution in computation, storage, and communica- 
tion over unlimited resources using well-defined computational semantics, as 
the Semantic Grid [7] is proposing. A grid node may provide new resources 
and services and their functional and non functional properties should be ex- 
plicitly defined by means of ontologies, formal and explicit specifications of 
shared conceptualizations [15]. Therefore, if semantic technologies are to be 
used, it is fundamental to provide the appropriate means for accessing, query- 
ing and using ontologies in the Grid. 

In this chapter, we analyse the problem of accessing, querying and using 
ontologies concerned with the current Grid architecture, taking as starting point 
the lessons learnt about this topic in the Semantic Web. 

The chapter is organised as follows: Section 2 collects some of the most im- 
portant lessons learnt in the Semantic Web regarding ontology access, query 
and use. Section 3 comprises an analysis of the ontology access problem in the 
context of the current Grid. Section 4 presents WS-DAIOnt, a proposed mech- 
anism for ontology access in the current Grid. Finally, Section 5 concludes 
with the current state of development. 

2. Lessons Learnt from the Semantic Web 

Recently, the W3C has recommended three languages: RDF ', RDFS and 
 OWL^, to represent knowledge in the Semantic Web. 

In addition, several ontology development tools (i.e., protkgk4, W ~ ~ O D E ' ,  
KAON~) support the creation of ontologies in such languages. There are also 
ontology query languages like SPARQL [13], RDQL [14], RQL [12], SeRQL 
[5] used for retrieving RDF(S) and OWL ontologies, and inference engines like 
F ~ C T ~  and RACER [ l  11 that infer knowledge and data that are not explicitly 
declared in the ontologies. Normally, these querying and inference tools are 
strongly related to the language in which the ontology is implemented. Such 
languages differ in their expressiveness (the kind of knowledge that can be 
represented) and in their inference mechanisms (the kind of reasoning they 
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carry out). For a detailed description and comparison of languages and tools 
we recommend [lo]. 

The diversity of existing ontology languages and tools causes the transla- 
tion problem, which appears when an ontologist decides to reuse an ontology 
(or part of it) with a tool other than the one used in its development, or in a lan- 
guage other than those in which the ontology is available. On the other hand, 
several APIs and query languages permit accessing ontologies implemented in 
a given language and an ontology user (or an application that uses the ontol- 
ogy) should know how to retrieve the ontology content using those APIs. As 
example, we can say that RDF(S) ontologies can be stored in sesame8, 3store9, 
Joseki", Jena", ~ o w a r i ' ~  or even Oracle with its support for RDF(s)'~, and 
each has its own means for accessing the RDF(S) ontologies. 

In this scenario interoperability and portability problems arise since the 
heterogeneity (different characteristics, properties and capabilities) of the lan- 
guages and tools used for the development and storage of the ontologies might 
prevent the reutilization of these ontologies in different infrastructures because 
of their technological differences, namely, their limitations, restrictions and 
requirements. 

At present, there are some language specific initiatives in the Semantic Web 
community devoted to solving specific problems, such as the W3C SPARQL 
query language, created to provide a RDF(S) query language for accessing to 
RDF(S) stores14 [13], or the DIG interface, targeted to providing a common 
API for description logic-based systems interoperability [4]. 

Despite all these initiatives, the Semantic Web community does not have a 
standard mechanism or protocol for accessing ontologies implemented regard- 
less of the language and tool used for its development. 

3. Possibilities for Providing Ontology Access in the Grid 
Up to now, current grid architectures have not taken into consideration on- 

tology use; therefore, no protocols nor standards are available in the grid com- 
munity to access and use them. 

To use ontologies as other resources in the Grid, we must be able to access 
their contents physically, as we do with any other available resource. There- 
fore, the first requirement for using ontologies is to have the appropriate means 

9http://threestore.sourceforge.net/ 
'Ohttp://www.joseki.org/ 
" http://jena.sourceforge.net/ 
'2http://www.kowari.org/ 
13http://www.oracle.com/technology/tech/semantic~technologies/ 
I4~argeted at retrieving data, not creating, deleting or updating data. 
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for accessing them. Building on these basic capabilities, it will be possible to 
develop and deploy ontology-based functionalities in the Grid. 

In this section we discuss where ontology access fits in the Open Grid Ser- 
vices Architecture (OGSA), and how ontology access services can be imple- 
mented. By ontology access we mean the mechanism or protocol needed for 
providing physical access to ontologies; by ontology access services we refer 
to the set of services that provide the means for accessing ontologies that are 
deployed as resources inside an OGSA-based grid. 

3.1 Laying Ontology Access Services in OGSA 
The Open Grid Services Architecture specification [8] is the blueprint for 

standard-based service-oriented grid computing. The specification collates the 
requirements for such an architecture15 and also identifies the set of capabil- 
ities (offered as services) that may be needed in order to satisfy the defined 
requirements: infrastructure services, job management services, data services, 
resource management services, security services, self-management services 
and information services. For a detailed description of both requirements and 
capabilities, please refer to [8]. 

Ontologies can be queried as to their content. Content includes the concepts 
and relationships, as well as intensional information about those concepts, as 
for example, the definitions that apply to a particular class. Ontology access 
services should then provide access to all this information and even support 
queries over this information. Thus, ontology access services can be seen as 
a particular type of data service, a service that holds some data and provides 
mechanisms for creating, retrieving, updating and deleting these data. Accord- 
ing to this, the most sensible mechanism for providing ontology access services 
should be based on the existing infrastructure in OGSA for data access. 

The following subsection reviews the data access and integration facilities 
in OGSA, as these must be known to fully understand the rest of the chapter. 

3.1.1 The OGSA Data Access and Integration Facilities. The Global 
Grid Forum (GGF) Data Access and Integration Working Group has a num- 
ber of specifications that support data access on the Grid. The Web Services 
Data Access and Integration Core SpeciJication [I], a.k.a. WS-DAI, and the 
accompanying realizations [2,6,3] ,  provide a general mechanism for defining 
data services (whose key characteristic is that it offers the possibility of updat- 
ing and retrieving the data from the data resource with which it interfaces) and 
specialised mechanisms for accessing specific data resources respectively. 

I S ~ h e y  range from interoperability and support for dynamic and heterogeneous environments and resources 
to resource sharing across organizations to data access to scalability, availability and extensibility. 
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The top level WS-DAI specification provides a basic and extensible frame- 
work for defining data service interfaces, messages and properties. With such a 
framework, the set of port types, operations and properties - which are needed 
to provide access to specific data resources - can be defined in a standard way. 
However, WS-DAI does not describe the particular interactions it performs 
with the data resource (in terms of, for example, query languages). 

The underlying WS-DAI realizations describe the specific operations 
needed to interact with specific data resources, i.e., relational databases using 
SQL, XML sources using XQuery, etc. The upper level specification is irrel- 
evant to the types of query that get passed through - they say nothing about 
the query language, result formats etc. The interfaces, messages and properties 
used must be defined in accordance with the WS-DAI framework. 

Note that when building an application that interacts with a WS-DAI re- 
source, it should be known beforehand which kind of resource will be used so 
that the appropriate WS-DAI realization is used. WS-DAI provides the most 
general properties of the data service as a grid service that the application may 
need to know about, while the realization provides the specific mechanisms for 
interacting with the data service. 

3.2 Ontology Access through the OGSA Data Access and 
Integration Facilities 

In order to integrate the ontology access services within the WS-DAI frame- 
work described in the previous section, several alternative approaches can be 
adopted according to how the framework is used and where the new services 
fit. 

The approaches range from the mere use of the WS-DAI framework to the 
extension of this framework to fit our purposes. Here, we also present the idea 
of abstract realization, a realization which is not a plain realization of WS- 
DAI but a set of guidelines that explain how to use the WS-DAI framework for 
defining sets of related realizations. 

In this section, we analyse each of the possible approaches and give exam- 
ples that showe possible implementations of each approach; the Semantic Web 
languages RDF(S) and OWL illustrate these examples. 

3.2.1 Several vanilla realizations. The first and most naYve approach 
consists in providing a specific access mechanism for each ontology language 
that is to be used; in our case, this means supplying a WS-DAI realization to 
each possible Semantic Web ontology language. 

The specific realizations must adhere to the syntax guidelines given by the 
WS-DAI framework for defining the access mechanism. The concrete tech- 
nical aspects needed to access data sources containing ontologies developed 
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with each specific Semantic Web ontology language are defined in its related 
realization. However, these realizations may have nothing in common, as the 
semantics of each realization is conditioned by the necessities and require- 
ments of the access mechanism provided for each language, as it happens in 
the following example. 

Here we have two basic realization designs for accessing respirces, one for 
RDF(S) and other OWL, both developed independently. 

The RDF(S) realization may provide access to RDF(S) by relaying on the 
graph nature of the RDF model: every model is composed of a set of nodes 
and links between the nodes. The nodes represent specific resources while the 
links represent properties of the source node resources. 

Figure I .  Sample RDF(S) vanilla realization 

Following this idea, the realization can provide a set of interfaces that de- 
liver functionalities for dealing with models with data structures that represent 
nodes (resources) and links (properties). Figure 1 represents a sample set of 
interfaces (already grouped in services) and the signatures of some of the mes- 
sages provided by the main interfaces. 

The design of the OWL realization can follow other approach, as for in- 
stance, an object-oriented one. According to this approach, the realization 
would provide interfaces which deal with data structures that mimic the con- 
ceptual elements defined in the OWL model: classes, properties, individuals, 
restrictions, etc. Figure 2 represents a sample set of interfaces and the signa- 
tures of some of the messages provided by the main interfaces. 
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Figure 2. Sample OWL vanilla realization 

Even though both realizations offer valid mechanisms for accessing their 
respective resources, we cannot ensure, according to this design approach, any 
homogeneity degree between the realizations, as there are no common guide- 
lines that guarantee such homogeneity: 

Data model structure: nothing is said about how to structure the data 
model that is to be used in the messages. In this scenario, the RDF(S) re- 
alization uses a graph-based data model, while the OWL realization em- 
ploys a component-like data model. Therefore, the interaction with the 
ontology services needs to be adapted to the specific operational model 
derived from the data model. 

Naming conventions: each realization uses its own prefixes and suffixes 
for denoting the names of the messages; for instance, the RDF(S) re- 
alization defines the messages adding the prefixes 'get', 'add' and 're- 
move' whilst the OWL realization names the messages with similar se- 
mantics using the prefixes 'retrieve', 'create' and 'delete'; furthermore, 
this latter realization defines messages with different semantics using a 
prefix (add) that clashes with other in the RDF(S) realization. When 
switching from one realization to other, the user will have to use another 
data model and to learn which are the concrete semantics of each type of 
message (being the type defined by the prefix and suffix combination). 

Access modalities: the RDF(S) realization provides messages for cre- 
ating, retrieving and deleting contents, while the OWL realization has 
an additional functionality for updating the contents. Therefore, if we 
switch from an ontology developed in OWL to another developed in 
RDF(S), we have to simulate this extra functionality, as it is not present 
in the RDF(S) realization. It might happen that missing functionalities 
cannot be simulated due to the specific design of the other realization; 
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in that case the patterns of interaction with the ontology in the user's 
application should have to be reviewed. 

rn Access granularity: in the case of the RDF(S) realization, access to the 
contents is provided in different granularity degrees: we can interact 
directly with a model, with a set of components (nodes and links) or 
with specific components. The richer the messages provided in each 
level are, the better the interaction with the RDF(S) resource will be. 
On the other hand, the OWL realization just provides access to specific 
components of the model. Again, when switching from one realization 
to other, we will have to reorganize the ontology-based business logic in 
order to use the services properly. 

rn Architectural organization: messages with similar semantics are defined 
in different conceptual components. Whilst the creation of components 
in the RDF(S) realization is carried out in the ModelAccess interface, in 
the OWL realization this is delegated to the Factory interfaces associated 
to each component. 

According to this scenario, the same interoperability problems that arise in 
the Semantic Web community appear when following this design approach: 
we end up having different mechanisms for accessing ontologies represented 
in RDF(S) and OWL, each one designed according to different criteria, which 
provide zero interoperability. Therefore, the ontology access service client 
must know beforehand the language in which the ontology is available, because 
helshe will have to use one or other realization for modelling the ontology- 
based business logic of the application. As it follows, switching from one 
language to other might cause severe changes in the ontology-based business 
logic, which is the main issue we are trying to solve. 

3.2.2 Two-layer realization. The idea here is to separate the common 
operations from the specific ones, following a two-layer organisation. On the 
one hand, the upper layer would contain a base WS-DAI realization defining 
the common specific operations that must be provided by every ontology ac- 
cess mechanism. On the other hand, the lower layer would contain WS-DAI 
realizations based on the base realization; each realization, which should be 
related to an ontology language, would define the specific operations for ac- 
cessing ontologies developed in that particular ontology language. 

In terms of operations, the two-layer realization approach introduces the 
idea of a common API that must be followed by each final realization (and so 
by each implementation). There are several ways of creating this API, here we 
present two of them: 
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Functional approach. The API contains the operations that represent 
functionalities for ontology access and management similar to those of- 
fered by ontology resources. According to this approach, the definition 
of the operations would be driven by the possibilities of the ontology 
resources. 

Functionalities can be selected in various ways, for instance, according 
to the desired granularity of the operations (the finer the grain detail is, 
the more functionalites will have to be provided by the API) or accord- 
ing to the size of the target API: we may want to minimize the number 
of functionalities provided by the API, so this becomes simple although 
rigid; or to maximize the number of operations so it becomes more flex- 
ible but rather complex. 

Conceptual approach. The API contains operations that deal with the 
conceptual elements available in the knowledge representation formal- 
ism of the ontology resources. Following this approach, the definition 
of the operations is driven by the necessities of the conceptual model, 
nor by the way the ontology resource deals with it, i.e. managing tax- 
onomies, reasoning over inherited properties, etc. 

The number of operations of the API would depend on the modelling 
elements chosen (the more elements, the more functionalities needed for 
dealing with them) and the orthogonality of the operations desired (the 
more independence between the functionalities and the operands, the 
more operations to provide). 

Thanks to this two-layer organisation, the basic ontology access interfaces 
can be standardised, thus lowering the risks of interoperability issues in the 
upper layer, that is, the one that contains the common operations. In Figure 
3 we can see that the SchemaAccess interface defines common taxonomical 
management operations such as retrieving the parents and siblings of a given 
class, and these operations are common to both underlying realizations. 

Unfortunately, no standardisation guidelines are provided for defining the 
specific operations to be set up in the realizations of the lower layer, nor which 
kind of operations can be defined in those interfaces. Therefore, interoperabil- 
ity problems might appear in some particular features of concrete languages. 

We can see in Figure 3 an example of this case. It shows that the new 
operations added in the RDF(S) realization just provide extra functionalities 
for dealing with the elements defined in the base realization following the same 
naming convention, whereas the OWL realization provides new functionalities 
for operating over specific elements of the OWL model (restrictions) with its 
own naming conventions. 

Regardless of the approach taken for the development of the API, enforc- 
ing the fulfillment of an API poses serious disadvantages. On the one hand, 
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Figure 3. Sample two-layer realizations for RDF(S) and OWL 

if the API that is to be fitted defines more operations than those provided by 
the resources, we may have a set of operations that not usable that will weaken 
the operational model defined by the API. On the other hand, if the API de- 
fines fewer operations than those provided by the resources, the potential of 
those resources is weakened because many of its capabilities will not be usable 
through the API. 

Despite these disadvantages, we gain a strong advantage when APIs are en- 
forced: the standardisation of the operations that will be used hereafter, which 
helps to reduce interoperability problems across realizations and implementa- 
tions. 

3.2.3 An extension of WS-DAI. Another approach consists in providing 
an extension to WS-DAI that, using the WS-DAI framework as basis, defines 
the specific structural elements needed for defining ontology access mecha- 
nisms, which are not defined in the basic WS-DAI framework. 

Once the extension is defined, it would be used as the basis for creating 
specific realizations that would provide ad-hoc access mechanisms to access 
ontologies developed with concrete knowledge representation formalisms or 
languages. However, this approach has its pros and cons, as we will see in the 
following example. 

In our sample extension, ontology resources (an specific type of data re- 
sources) are composed of components which, in their turn, may also be com- 
posed of other components. For dealing with these, an extra type of interface 
will be used. The interface will be named appending the suffix 'Components' 
to the name of the data resource it operates with. The interface will provide 
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BREAD functionalities 1 6 ,  named with preffix the type of operation and the 
suffix 'Component'. 

Figure 4. Implementations of the sample extension of WS-DAI 

Figure 4 shows implementations of the sample extension for RDF(S) and 
OWL. Thanks to the extra structural elements defined in the extension, some 
kind of homogeneity is achieved, i.e. operations share a naming convention, 
messages with similar semantics are grouped in the same interfaces, etc. Thus, 
the interoperability problem decreases although unfortunately this effect is lim- 
ited to these new structural elements. 

However, in spite of the homogeneity achieved, the use of extra structural 
elements makes ontology access services different from plain WS-DAI data 
access services; therefore, whenever a user needs these services, helshe must 
know about their specificities to use them properly. 

This requirement implies interoperability problems between data services: 
while a user of ontology access services would be able to understand and ex- 
ploit plain WS-DAI data services, a user of plain WS-DAI data services would 
not be able to utilize the ontology access services since helshe has no way of 
inferring the semantics of the new structural elements used in the declaration 
of the ontology access services. 

3.2.4 An abstract realization. This last approach is based on the two 
previous ones and is targeted at solving the problem of enforcing the fulfillment 
of a common API, and at creating extra structural elements. 

The idea hera is to provide a means for defining the capabilities that might 
be offered via an ontology access service and the ways in which they are of- 
fered, and to provide a mechanism for publishing the specific capabilities im- 

I6~rowse,  read, edit, add and delete. 
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plemented by an ontology access service, so a client can discover and exploit 
them. This can be done by means of an abstract realization. 

As we reviewed in section 3.1.1, the objective of the base WS-DAI core 
specification is to define a base framework for defining data access services 
that can be adapted to particular necessities. To achieve this, the base speci- 
fication provides a set of patterns that defines messages and properties. With 
these patterns, concrete realizations define the set of WS-DAI-based elements 
needed for accessing a specific kind of data resource. 

An abstract realization is a realization that does not define specific mes- 
sages nor properties for providing a particular access mechanism; it defines a 
set of WS-DAI compliant patterns for defining interfaces, messages and prop- 
erties oriented to the specification of an adaptable set of related data access 
mechanisms. 

In our case, the abstract realization should be created for defining ontology 
access mechanisms. Later realizations of this abstract realization can choose 
which capabilities to implement and then define them with the patterns found 
in the base abstract realization. Let's see in the following example how this 
could be achieved. 

The first step consists in selecting the elements of the data model that is 
to be supported. In the case of the RDF(S) and OWL languages, these ele- 
ments are well-known and defined. Therefore, we could say that the ontol- 
ogy access mechanism must be able to operate over the union of both mod- 
els: classes, properties, restrictions, individuals, etc. Specific realizations will 
choose which elements to support. In order to shorten the example, we can 
think that the valid elements are just classes, properties and restrictions, and 
that classes and restrictions are linked to properties (and viceversa). 

Then, we have to select which kind of operations we want to provide in 
order to operate over the supported data model. In our example we show basic 
CRUD operations: create, retrieve, update and delete. The create operation 
provides an id for the element created, and that id is used in the rest of the 
operations for referring to that concrete element. 

Once we have defined the data model and the way we can operate with 
it, we have to define the patterns that will drive the definition of the related 
infrastructure: 

Interface creation patterns: 

PATTERN I1 : A description interface named 'element 'Description 
will be created for each element of the model. 

PATTERN 12: An access interface named 'element'Access will be 
created for each element of the model. 
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PATTERN 13: If an element is linked to any other element, a fac- 
tory interface named 'element 'Factory will be created for that el- 
ement. 

rn Messages creation patterns: 

PATTERN M1: A message named 'operation "element' will be cre- 
ated in the appropriate access interface for each 'element' that 
supports the operation 'operation ' I7. 

PATTERN M2: If an element ei is linked to another element ej, a 
message named retrieve 'ej 'Factory will be created in the factory 
interface of the element ei. 

rn Properties creation patterns: 

PATTERN P I :  A property named 'IinkedTo ' will be defined in each 
description interface. If an element ei is linked to any other ele- 
ment e j  the value of the property will be the list of elements e j  to 
which ei is linked. Otherwise, the property will be nil. 

PATTERN P2: A property named 'operationsSupported' will be de- 
fined in each description interface. If an element ei supports an 
operation opj, the value of the property will be the list of opera- 
tions opj supported by the element ei. 

With all of these patterns we can then produce our RDF(S) and OWL real- 
izations (see Figure 5). As we can see, in the case of classes and properties, the 
names of the interfaces and messages are shared in both RDF(S) and OWL, so 
switching from one realization to other (when dealing with classes and proper- 
ties) would not require changes in the ontology-based business logic. 

Following this approach, each realization can choose the capabilities re- 
quired, and by means of the patterns defined in the abstract realization, the 
interfaces, messages and properties are defined in an homogeneous and stan- 
dard way. 

3.3 Conclusions 
The OGSA specification defines a set of requirements that must be fulfilled 

by any implementation of the specification; it also defines a set of capabilities 
(services) that might be offered via implementations to fulfil these require- 
ments. 

According to these requirements and capabilities, the data access and inte- 
gration facilities defined by OGSA constitute the most sensible niche for fitting 

I7opj is one of 'create', 'retrieve', 'update', 'delete' 
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Figure 5. Sample RDF(S) and OWL realizations using the abstract realization approach 

the ontology access services inside the OGSA architecture. The data access 
and integration facilities are governed by the WS-DAI specification, which is 
still under development inside of the GGF. 

In the previous subsections, we have presented several approaches that pro- 
vide ontology access using the WS-DAI specification as a basis; these ap- 
proaches range from the realizations to the extensions. 

The first approach clearly requires complete new implementations for any 
additional language introduced, as nothing is reused from other realizations. 
The second approach, on the contrary, provides some reuse by means of de- 
signing a two-layer mechanism that proposes a set of common functionalities. 
The cost of such reuse is the issue of factoring out a sensible subset of func- 
tionalities valid for any possible ontology language, which may end up posing 
interoperability problems between the services and the ontology resources. 

The third approach consists in creating an extension to WS-DAI. This alter- 
native suggests that there are characteristics and properties which distinguish 
ontology access services from vanilla data access services. Nevertheless, ex- 
ploiting these differences by means of extra structural features may imply inter- 
operability problems between plain data services and ontology access services. 

Finally, the fourth approach suggests that there might be characteristics that 
distinguish ontology access services from plain data services, but also, that 
there are subtle differences between ontology resources that must be also taken 
into consideration. The fourth approach proposes a way for defining operations 
in a common format (taking into account these differences between ontology 
resources), so that some kind of standardisation is introduced in the underlying 
realizations. 

Therefore, and bearing in mind the objectives of reducing the amount of 
different ontology access mechanisms and of facilitating the interoperability 
between them, the best design approach is the abstract realization one. 
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4. WS-DAIOnt: a Proposal of an Ontology Access 
Mechanism in the Grid 

The WS-DAIOnt specification [9], which is the short term for "Web Ser- 
vices Data Access and Integration: The Ontology Realization", and the ac- 
companying realizations (WS-DAIOnt-RDF(S), . . . ) define the data access 
infrastructure needed for dealing with ontologies in grid environments. 

WS-DAIOnt is based on the WS-DAI specification and provides a frame- 
work for defining ontology access service interfaces by means of the WS- 
DAI vocabulary, and for enhacing it with the patterns and properties needed to 
provide specific ontology access mechanisms. Specific ontology data sources 
are then addressable according to concrete WS-DAIOnt realizations, i.e. WS- 
DAIOnt-RDF(S). 

In the following subsections, both the foundations of WS-DAIOnt and the 
components of WS-DAIOnt will be described. 

4.1 WS-DAIOnt Foundations 
The WS-DAIOnt specification is being designed following the abstract real- 

ization approach described in Section 3.2.4. The foundational pillars that drive 
the design of the specification are the following: 

Unified basic terminology. Currently, knowledge representation for- 
malisms use their own terminology for naming the knowledge mod- 
elling components (ontology elements) they use. Thus, frames-based 
formalisms use the name 'class' for referring to what it is named 'con- 
cept' in description logics. 

Whereas humans are able to match the names as synonyms and use both 
of them indistinctly, software agents are not able to do so. Therefore, 
interoperability problems might appear because of this terminology tan- 
gle. 

WS-DAIOnt defines a neutral vocabulary for naming the ontology ele- 
ments to be used when dealing with ontologies in grid environments, tak- 
ing into account the specific modeling components of different knowl- 
edge representation formalisms (frames, semantic networks, description 
logics . . . ) 
This common and standard vocabulary avoids the use of multiple differ- 
ent vocabularies that would hamper the understanding of the provided 
data components and functionalities. 

Ontology components relationshipspatterns. Each knowledge represen- 
tation formalism defines a set of modeling elements and the way they 
are related to each other. For instance, in the frames formalism slots are 
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defined locally (in frames), whereas in description logics properties are 
defined globally (and can then be restricted to specific classes). 

WS-DAIOnt defines how to specify the concrete ways in which ontol- 
ogy components can be related, and which is the expected semantics of 
these relationships, so clients can deduce how to conceptually use them 
properly. 

Ontology components usage patterns. WS-DAIOnt defines how the in- 
terfaces, messages and properties must be specified in terms of WS-DAI 
patterns, in order to provide functionalities in a standard way. Therefore, 
clients can deduce how expected functionalities have to be exploited. 

Ontology access sewices behaviours. WS-DAIOnt defines the expected 
behaviour of the predefined common components and functionalities, 
so that every concrete implementation must adhere to these behaviours. 
Therefore, clients may expect some kind of homogeneous behaviour 
across realizations and implementations. 

WS-DAIOnt Components 
The two main components of WS-DAIOnt are the WS-DAIOnt Data Model 

and the WS-DAIOnt Port Types. 
The WS-DAIOnt Data Model defines how the data managed by the specified 

interfaces is virtually structured. The data model works as a metamodel from 
and to which other knowledge representation formalisms may be mapped - by 
means of these mappings the interfaces provide a common way for accessing 
heterogeneous ontologies. 

The data model defines the unified terminology to be used in WS-DAIOnt 
regarding the data components and also defines the possible relationships pat- 
terns among them. 

The organization of the data model has two dimensions: 

Layered structure. The components are divided in two layers, the core 
layer and the extended layer. On the one hand, the core layer contains 
the common modeling components found in most of the representative 
knowledge representation formalisms. On the other hand, the extended 
layer will contain those modeling elements not considered for the core 
layer because of their specificity or because they are yet to appear. 

Model and data separation. The components are also divided with re- 
gard to their concerns: those used for the conceptualization are grouped 
together in the model part, and those used for dealing with individuals 
are grouped in the data part. 
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The WS-DAIOnt Port Types proposes a hierarchy of port types (interfaces), 
providing different granularity levels of access to the data model components 
for the sake of usability. 

The upper levels of the hierarchy are general purpose interfaces that are 
fixed in the WS-DAIOnt specification and are mandatory for every underlying 
realization. The lower levels of the hierarchy are realization-dependent. In 
order to create the port types in a standard way, WS-DAIOnt defines a set of 
message design and organization criteria based on the components of the WS- 
DAIOnt data model usage and relationships patterns. 

5. Conclusions 

Ontology access provisioning is crucial if we want to enrich the Grid with 
semantic technologies. Furthermore, due to the increasing number of existing 
ontology languages and tools, an effective mechanism that guarantees inter- 
operability between ontology access mechanisms must be developed. Up to 
date no protocols nor mechanisms are available in the OGSA architecture for 
dealing with ontologies in an effective manner. 

By extending WS-DAI with WS-DAIOnt and the accompanying realiza- 
tions, we provide the current grid architecture with a standard way of supply- 
ing ontology access and management capabilities, making ontologies available 
in grid environments like other specialized data resources usable across virtual 
organizations, thus enabling the future integration of semantic technologies in 
the grid architecture. 

WS-DAIOnt, and the accompanying realizations, are still under develop- 
ment as part of the OntoGrid project. 
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Abstract Co-ordinated usage of resources in a Grid environment is a challenging task 
impeded by the nature of resource usage and provision: Resources reside in dif- 
ferent geographic locations, are managed by different organisations, and are by 
no means accessible via standardised interfaces, protocols or commands. These 
prerequisites have to be taken into account in order to provide solutions in the 
area of Grid scheduling and resource management. 

In this document we propose the employment of a semantic model for Grid 
scheduling. The Grid Scheduling Ontology describes the capabilities and state 
of a scheduler, providing a machine-processable and interoperable model for the 
integration of local schedulers into Grid resource management. Along with the 
model we present a meta-scheduling architecture based on the VIOLA Meta- 
Scheduling Service that uses ontology modelling and reasoning capabilities of 
OWL to provide semantic support for meta-scheduling in Grids. 

Keywords: resource management, advance reservation, meta-scheduling, semantic model, 
Grid Scheduling Ontology. 
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1. Introduction 
The resources needed to execute workflows in a Grid environment are com- 

monly highly distributed, heterogeneous, and managed by different organisa- 
tions. One of the main challenges in the development of Grid infrastructure ser- 
vices is the effective management of those resources in such a way that much 
of the heterogeneity is hidden from the end-user. This requires the ability to or- 
chestrate the use of various resources of different types. In this work we focus 
on the co-allocation of resources to assemble a virtual machine that enables the 
execution of distributed workflows consisting of many parallel tasks. 

1.1 Previous Work 
Recent research [I91 has shown how a meta-scheduler can be employed 

to schedule workflows by co-allocating resources on multiple Grid nodes. A 
meta-scheduler is a Grid service that interfaces with multiple local schedulers 
or other meta-schedulers to negotiate with them advance reservation of re- 
sources based on user requirements such as time or QoS constraints. The goal 
of this negotiation is to determine feasible time slots in which all required 
resources are available for the requested start time to execute the distributed 
workflow. 

In order to be able to participate in negotiation, local schedulers should be 
capable and willing to accommodate specific meta-scheduler requests: 

Advance reservation of resources by offering job execution start and stop 
times. 

At least partial access to local schedules, e.g. by providing information 
about available time slots. 

Some control over existing reservations, e.g. to cancel or extend a reser- 
vation. 

Currently only a few local scheduling systems such as CCS [9], PBS Profes- 
sional [14], or LSF [I I] offer these capabilities; however, more are expected 
to appear as it is in the interest of resource owners to advertise their resources 
with guarantees for QoS to the Grid. 

The main functions of a meta-scheduler include (i) allocation of a single 
resource for a single application for a fixed period of time, (ii) co-allocation 
of multiple resources for the same fixed period of time for single or multiple 
applications, (iii) allocation of multiple resources for multiple applications for 
different fixed periods of time, and (iv) allocation of dedicated resources for 
either of the cases above. 

The prototype Meta-Scheduling Sewice described in 1191 currently realizes 
functions (i) and (ii). The scheduling algorithm is based on a multi-step ne- 
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gotiation process, involving the pre-selection of suitable local schedulers, the 
acquisition of feasible start times from them, selecting resources, and a confir- 
mation of the available start times from each of the schedulers involved. 

The Meta-Scheduling Service interfaces with local schedulers through ded- 
icated adapters (as depicted in Figure 1) that hide the heterogeneity of the 
schedulers' native interfaces. These adapters offer a uniform set of abstract 
operations to the meta-scheduler which include requesting available start time 
slots for jobs, submitting scheduling requests for a specific time slot, and 
requesting the state of the current reservation. Meta-scheduling requests 
are communicated by client applications using WS-Agreement [ l ]  while the 
adapters forward local requests using proprietary commands. This architec- 
ture allows an easy integration of meta-scheduling capabilities into existing 
Grid environments. 

(Q) WS-~greemen Meta- 
4 Scheduling 

Service H 
A d a p t e r  

I 
Adapter - 

Workflow Submission Negotiation I 

Grid 
Middleware 

Submission, 
Monitoring 

Figure 1. High-level meta-scheduling architecture 

1.2 Motivation to Employ Semantic Models 
One shortcoming of the current architecture is that, while the adapters pro- 

vide uniform operations, no shared data model is available to describe a sched- 
uler's set of capabilities and current schedule state. For example, there is no 
explicit and shared definition of scheduling concepts like time slot or schedule 
queue, or of capabilities like time slot reservation change. Instead, these con- 
cepts are left implicit in the implementation of the adapters, which expose a 
set of generic scheduling operations. 

Although the adapter in its current form fulfils the initial use case require- 
ments as presented in Section 1.1, this approach still holds potential to increase 
the flexibility of the meta-scheduler. Assuming that a modified version of the 
scheduling algorithm is needed to query the schedulers' ability to modify the 
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time slot allocation after the initial reservation (a feature that was previously 
not needed). At present, the only option available would be to accommodate 
the new feature to upgrade the adapters (all of them) in order to support the 
new query. 

In this paper we introduce a novel approach to extensible meta-scheduling, 
based on the definition of a shared, explicit and extensible vocabulary to de- 
scribe a scheduler state as well as its capabilities. We show how such a shared 
information model for scheduling concepts supports the negotiation process in 
a more flexible and adaptable way than it is currently possible. 

Our approach is inspired by a number of recent initiatives towards the de- 
sign of semantic models for describing Grid resources [15], mainly for in- 
teroperability purposes [4, 3, 51. Common to all these efforts is the explicit 
representation of knowledge regarding available resources, encoded in such a 
way as to make it machine-processable. 

Following the same principles, but on a more limited scope, we have de- 
veloped a lightweight semantic model, called the Grid Scheduling Ontology 
(GSO), to describe the capabilities and state of Grid schedulers. The ontology 
definition process has recently been described in [20] and is based partially on 
the Grid Scheduling Dictionary of Terms and Keywords [I 61. 

Along with the model we also present an enhanced meta-scheduling archi- 
tecture and show how it can improve support for meta-scheduling algorithms 
and negotiation processes. The ontology modelling and reasoning framework 
offered by the OWL semantic modelling language [12] provides the necessary 
functions. Specifically the GSO includes a collection of scheduler classes, 
where each class is defined in terms of a set of underlying capabilities, for in- 
stance the ability to expose the current schedule, to accommodate changes in a 
reservation, and so forth. 

Using a OWL DL reasoner [2], individual schedulers whose capabilities can 
be expressed using the terms in the ontology can then be automatically classi- 
fied as belonging to one or more of the scheduler classes. This classification is 
then exploited by the meta-scheduler, as described in detail in Section 3. 

1.3 Organisation of the Paper 
The remainder of the paper is organised as follows. In Section 2 we present 

the requirements and use cases that provide basis for the knowledge modelling 
activity. The semantic model itself is described in Section 3, followed by the 
proposed implementation in Section 4. An overview of further developments 
for this work concludes the paper. 
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2. Requirements for the Scheduling Domain Knowledge 
Model 

The introductory section already listed three general requirements that de- 
fine the meta-scheduling environment our work is based on. The fulfilment 
of these requirements is currently realised through adapters which provide an 
abstraction level between local schedulers and the Meta-Scheduling Service. 
With respect to the flexibility of this approach we discovered a certain po- 
tential for improvement, as reported in Section 1.2, and, to achieve this, we 
suggest the definition of a scheduling domain vocabulary. Since such a vocab- 
ulary makes a thorough knowledge acquisition process necessary, we re-visit 
and examine the original meta-scheduling use cases in this section. 

2.1 The Resource Pre-selection Use Case 
Many Grid resource management and scheduling scenarios include a re- 

source pre-selection phase where resources are selected as candidates for the 
actual scheduling process based on static properties [17]. "Static" in this case 
refers to properties which do not change from the time the resource request 
is submitted until the work is finished. Such properties are e.g. the operating 
system of a compute resource or the maximum bandwidth of a network con- 
nection, but also the capability of a resource management system to support 
meta-scheduling. 

According to [19] a local scheduler/resource manager has to provide the 
following two functions to support meta-scheduling: 

I Schedule a reservation at a fixed date and time for a well-defined period 
of time (Advance resewation). 

2 Provide an aggregated overview of the usage of the managed resource 
between now and a well-defined date and time in future ( Usagepreview). 

The first functionality is a prerequisite: a local scheduler that cannot per- 
form advance reservation will not be able to participate in the meta-scheduler 
process. The second functionality is not as essential, but it has implications on 
the scheduling algorithm: ideally the meta-scheduler receives all information 
from the local schedulers it needs to execute a co-ordinated schedule for all 
resources involved. But even if a local scheduler does not provide any infor- 
mation about the future usage of the managed resource, the meta-scheduler (or 
the entity that pre-selects resources) may decide to include it into the schedul- 
ing process given that first requirement is fulfilled. 

The vocabulary should therefore provide answers to the following questions: 

Does the local scheduler support advance reservation? 
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w Does the information provided by the local scheduler with respect to the 
hture usage of the resource fblfils the second requirement? 

2.2 The Schedule Enquiry Use Case 

This use case extends the second requirement of the previous use case. 
Once the resource pre-selection is finished the local schedulers involved in 

the meta-scheduling process are queried for a resource usage preview (pro- 
vided that they deliver this kind of information). With the current adapter in 
place it is no problem for the meta-scheduler to retrieve the usage preview in 
the required format since the adapter converts the preview information into 
the format needed by the meta-scheduler. Assuming that we want to make 
the design of the adapter generic and independent of the local scheduler, it is 
necessary to provide metadata to convert the local scheduler's parameters to 
the format consumed by the meta-scheduler. One of the local schedulers that 
have already been integrated into the meta-scheduling environment presented 
earlier is the EASY scheduler [18]. It provides commands to, inter alia, return 
the current queue (pq), reserve e.g. 10 nodes for 5 minutes for an interactive 
job (psubmi t -n 10 - i - t 5), show an estimation when the jobs in the 
current queue will be executed (pwhen), or give a preview of the free nodes 
( p r e v l i s t ) .  

The vocabulary representing the scheduling domain should therefore help 
to answer questions like: 

What is the total estimated run time of all jobs under the control of the 
local scheduler? 

w What is the status of a certain queue? 

w What is the first possible date and time a certain job can be scheduled on 
the managed resource? 

2.3 Alter Reservation Use Case 

A third and final use case involves altering an existing reservation, i.e., ex- 
tending its lifetime or cancelling it. Our semantic model does support this use 
case by including the description of the possible reservation states, while the 
current implementation of the adapter already allows for the cancellation of an 
existing workflow. Full support for this use case, however, is beyond the scope 
of our current work and will be undertaken in a later stage. 

3. A Semantic Model for Grid Scheduling 

As outlined in the introduction, a meta-scheduler is able to negotiate re- 
source allocation with local schedulers that are capable of providing advance 



Semantic Support for Meta-Scheduling in Grids 175 

reservation of resources (requirement I), and that optionally allow at least par- 
tial access to the local schedules (requirement 2), and allow some control over 
existing reservations (requirement 3). In this section we describe the seman- 
tic model called Grid Scheduling Ontology which we use in our new meta- 
scheduling architecture to fully support the first two functionalities and to lay 
the foundations to support the third. 

The negotiation process relies on a registry of available local schedulers, in 
which each scheduler is described according to the common semantic model. 
The meta-scheduler uses the registry to pre-select schedulers, as well as to 
query their state throughout the reservation and resource allocation process. 

The model is defined using the semantic web language OWL DL [I 21. OWL 
DL allows the definition of classes, relationships among the classes (called 
object properties) as well as individuals.' Classes can be organised into hi- 
erarchies, and a class can have any number of parents. Individuals may be 
instances of multiple classes. We write x E C to indicate that individual x is a 
member of class C. 

Figure 2. Fragment of the capability hierarchy (some nodes are not expanded) 

At first we introduce a hierarchy of classes to model resource management 
capabilities, as shown in Figure 2. The capability of ferReservation corre- 
sponds to the first of our requirements: a scheduler not providing it cannot take 
part in the advance reservation negotiation. Additionally, we model the ability 
to query the current scheduler as a tree with multiple levels of precision, and 
the ability to alter reservations that have already been made (this node is not 
expanded in Figure 2). Other branches of the hierarchy, which describe for in- 

'Additional features of the language will be introduced when needed as part of this description. 
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stance the access control mechanisms enforced by schedulers, are not shown. 
Note that some of the classes are defined in terms of other classes using OWL 
class construction operators. For example, limited-disclosure is defined by 
composition, as the capability to request the job names, the job types and the 
submission times from a schedule. 

fully-capable- 

scheduler 

Figure 3. A classification of schedulers 

As a next step we introduce a classification for local schedulers, rooted at the 
top-level scheduler class. The property scheduler-has-capability allows 
us to define various subclasses of schedulers in terms of capability sets. 

Consider the schedulers classification hierarchy shown in Figure 3. Each 
of the classes in this hierarchy is defined in terms of other classes and proper- 
ties in the ontology, using OWL DL'S class definition operators. For instance, 
schedule-disclosing-scheduler is the class of all schedulers whose set of 
capabilities includes at least the ability to query the current schedule. Note 
that the type of query that is allowed (i.e., queryJob, queryTime) is not spec- 
ified. Therefore, any scheduler whose capability includes at least the generic 
query-current-scheduler class, is a schedule-disclosing-scheduler. 
Using these operators, it is easy to define classes that correspond exactly to 
the set of schedulers which are eligible for negotiation in the context of meta- 
scheduling. 

In general, OWL DL allows classes to be defined as a set of necessary and 
sufficient conditions, as in the example above.2 An AR-capable-scheduler, 
for example, is any scheduler that, among other capabilities, offers advance 
reservation, and for this reason satisfies our requirement 1 property. 

The next example of a scheduler class highlights an important feature of- 
fered by the OWL DL language. The capable-and-disclosing-scheduler 
class represents all schedulers whose capabilities include both 
off erReservation and query-current -schedule. In Figure 3 this 

'~ormal notation is avoided in this paper for the sake of readability 
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scheduler-has-capability 
I 

mstance-of 

instance-of Instance-of Rrtance-of 

scheduler- 

capab~llty 

Figure 4. A scheduler profile 

Figure 5. A scheduler with a profile 

class appears as a subclass of both AR-capable-scheduler and 
schedule- d isc los ing-  scheduler, although these is-a relationships are 
not part of the definition. The OWL DL operators are defined in such a way 
that it is possible to perform specific types of reasoning on the definitions 
of classes and individuals. In particular, an OWL DL reasoner [2] computes 
the set of most specific is-a relationships for a collection of classes defined 
using necessary and sufficient conditions as shown above. Thus, the hierarchy 
shown in Figure 3 is an example of inferred classification that has been 
computed from the class definitions just given. 

Let us now return to the definition of scheduler classes for meta-scheduling. 
A schedulerprojile is any individual pl, which is an instance of one or more 
capability classes, for instance offerReservation, queryJob, Or queryName 
(see Figure 4). If we introduce an instance Isl of scheduler, and assert that 
Isl has capability profile p l  (Figure 5), we can leverage the OWL DL rea- 
soning capabilities again, this time to infer the most specijic classes of which 
the individuals of the ontology are instances. In other words, can we say 
that Isl must be a member of some specific subclass of scheduler, given 
that it has capabilities p l ,  and that scheduler's subclasses are indeed de- 
fined in terms of sets of capabilities? In this case, the reasoner is indeed 
able to infer that Isl E capable-and-disclosing-scheduler, because pl in- 
cludes both of ferReservation (necessary for any AR-capable-scheduler) 
as well as two schedule querying capabilities that are more specific than the 
required generic resource management capability query-current-scheduler 
(Figure 6). 
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Figure 6. Classified scheduler 

In practice, using this model and the associated reasoning features, we are 
able to obtain a classification of schedulers on the grounds of capability pro- 
files. This automatic classification enables a meta-scheduler to retrieve all the 
schedulers of interest with minimal effort, simply by querying the model for 
all instances of one or more specific classes. As a more complete example, 

pi E off erReservation n queryJob n queryName 

p2 E query~imenal ter - f rom-booked C alterReservation 

p3 E of ferReservation 

Isl has capabilities p l ;  

Is2 has capabilities pa; 

1 s3 has capabilities p3; 

I s4 has capabilities p2 and p3. 

With these definitions, the reason er computes the schedul ers' cl assifi 

consider the following assertions for a set of capabilities and schedulers: 

cati on 
shown in Figure 7. A query for all AR-capable schedulers would now return 
{Is3, Is1, Is4), while the alterable-reservation schedulers are {Is2, Is4). 

4. Environment for Semantic Exploitation 
An architecture for providing Web and Grid services with a semantic de- 

scription in order to facilitate their semantic discovery, called S-OGSA, has 
been proposed recently [6]. S-OGSA identifies key Grid services that enable 
the collection and exploitation of semantics within a Grid architecture, and 
prescribes patterns of interaction among these services. The realisation of the 
environment described here follows the S-OGSA architectural patterns. 
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Figure 7. An automatic classification of schedulers 

4.1 S-OGSA-based Architecture 
An instantiation of an S-OGSA architecture for the meta-scheduling usage 

scenario is presented, at a high level, in Figure 8. 
Two types of knowledge characterise local schedulers: 

Their capabilities with respect to reservation management, as discussed 
earlier. This knowledge is expected to be fairly stable in time, and inde- 
pendent of the current scheduling activity. 

A representation of the current scheduling activity which includes the 
current advance reservations that have been accepted and their states. 
The meta-scheduler must consider that such dynamic information may 
not be available, as not all schedulers will be configured to provide it. 
If available, however, it allows a meta-scheduler to pre-select resources 
based for example on the current scheduler workload. 

All this knowledge is encoded using the RDF format [lo], a W3C standard 
for describing semantic annotations, and stored in a Metadata Service. The 
meta-scheduler may query the metadata service using an S-OGSA-compliant 
Web Service interface, in order to obtain the capability profiles and current 
state of registered schedulers. An Ontology Management Service can be used 
to obtain the latest version of the Grid Scheduling Ontology in a location- 
transparent way. At this point, the meta-scheduler holds both the individuals 
(in RDF format) and the class definitions (in OWL) required to carry out the 
inferencing process described in Section 3, using a separate Reasoning Service 
as shown in Figure 8. 



KNOWLEDGE AND DATA MANAGEMENT IN GRIDS 

I Ontology Management I 
I Service I 

WS-DAIOnt 
interface 

metadata 
reasoner 

Metadata Service interface 

Scheduling Reasoning 

Service scheduler 
classification 

requests 

metadata advance 

upload 
interface 

scheduler state 

Figure 8. Architecture for exploitation of semantics by the Meta-Scheduling Service 

4.2 Evolution of the current Architecture 
The transition from the current VIOLA meta-scheduling architecture, pre- 

sented in Section 1.1 (shown in Figure l), to an architecture which integrates 
the semantic model (as shown in Figure 8) can be done in several steps without 
breaking the overall architecture. To achieve this, four components have to be 
added: 

1 The Metadata Service (MS) with a query interface for the Meta- 
Scheduling Service (MSS) and a metadata upload interface for the Lo- 
cal Scheduler' Semantic Adapter (LSSA). The MS also implements the 
RDF repository that contains the RDF representation of state and capa- 
bilities of the different local schedulers. 

2 The LSSA which converts the scheduler state and capabilities, trans- 
forms them into an RDF representation and uploads them to the RDF 
repository. The LSSA is needed for those local schedulers - currently all 
- which are not able to provide the metadata. Future schedulers may have 
this capability and will then be able to upload their metadata directly to 
the RDF repository. 

3 The Ontology Management Service (OMS) based on WS-DAIOnt [8] as 
defined by the OntoGrid project [13]. The OMS stores the GSO and pro- 
vides a WS-DAIOnt interface towards the MSS for accessing the GSO. 
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4 The Reasoning Service (RS) with an interface to the MSS allowing to 
receive scheduler classification requests and to submit the classifications 
needed for the pre-selection back to the MSS 

Once these new components are available the transition to the new architecture 
can be performed by adding the following to the MSS: 

The metadata query interface between MSS and MS, 

the WS-DAIOnt interface to access the GSO, 

the interface to the RS, and 

logic that allows to pre-select appropriate local schedulers based on their 
capabilities and actual state, and to use the metadata to negotiate the 
advance reservation with the pre-selected local schedulers. 

Finally the current adapters may be removed as they are obsolete in the new 
MSS framework. 

5. Future Perspectives 

Once implemented we will evaluate the GSO-based architecture and com- 
pare it to the solution presented in Section 1.1. Since the current implemen- 
tation of the VIOLA Meta-Scheduling Service is already used to co-allocate 
MPI workflows it seems feasible to set up a testbed combining "semantically- 
enriched" and "classical" adapters. It will then be possible to compare the 
functional range of both solutions. It is envisaged that this evaluation will lead 
to another iteration of the ontology building process. 

In this context it will also be necessary to review the model by means of 
usage scenarios that include arbitrary resource types. Although the use cases 
described in Section 2 reflect mostly general Grid scheduling requirements, 
the query-current - schedule capability is modelled according to the require- 
ments of queue-based local resource managers. The integration of network re- 
source managers into the VIOLA meta-scheduling environment will allow us 
to do this review. 

In addition we will examine the a1 ter- reservat ion resource management 
capability and negotiation-related issues linked to the negotiation protocol ac- 
tivities of the GRAAP Working Group at GGF [7] .  
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Abstract We study the problem of resource discovery in the Semantic Grid. We show 
how to solve this problem by utilizing Atlas, a P2P system for the distributed 
storage and retrieval of RDF(S) data. Atlas is currently under development in 
project OntoGrid funded by FP6. Atlas is built on top of the distributed hash 
table Bamboo and supports pull and push querying scenarios. It inherits all 
the nice features of Bamboo (openness, scalability, fault-tolerance, resistance 
to high churn rates) and extends Bamboo's protocols for storing and querying 
RDF(S) data. Atlas is being used currently to realize the metadata service of 
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on the main features of Atlas and demonstrate its use for Semantic Grid resource 
discovery in an OntoGrid use case scenario. 
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1. Introduction 

For the Semantic Grid vision [15] to become a reality, high quality of ser- 
vice must be offered to users and applications at all levels of the Grid fabric. 
In this paper, we concentrate on high quality of service in the provision of 
resource discovery services in Semantic Grids. Resource discovery is an im- 
portant problem in Grids in general, and Semantic Grids in particular. We 
discuss how to achieve high-performance, scalability, resilience to failures, 
robustness and adaptivity in the provision of resource discovery services in 
Semantic Grids, and especially in OntoKit, the Semantic Grid toolkit currently 
under development in project OntoGrid [24]. 

OntoGrid ( h t t p  : //www . o n t o g r i d .  n e t )  is a Semantic Grid project 
funded by the Grid Technologies unit of the European Commission under the 
strategic objective "Grid-based systems for Complex Problem Solving" of the 
Information Society Technologies programme of FP6. 

Our basic assumption in this paper is that Semantic Grid resources (e.g., ma- 
chines, services or ontologies) will be annotated by RDF(S) metadata. Meta- 
data pervades the Semantic Grid and is used to describe Grid resources, the 
environment, provenance and trust information etc. [15]. The Resource De- 
scription Framework (RDF) and RDF Schema (RDFS) are frameworks for rep- 
resenting information about Web resources. RDF(S) consists of W3C recom- 
mendations that enable the encoding, exchange and reuse of structured meta- 
data, providing the means for publishing both human-readable and machine- 
processable information and vocabularies for semantically describing things 
on the Web. Although RDF(S) was originally proposed in the context of the 
Semantic Web, it is also a very natural framework for representing information 
about Grid resources. As a result, it is used heavily in various Semantic Grid 
projects e.g., mYGrid ( h t t p  : //www . m y g r i d .  o r g  . uk) or OntoGrid. 

We propose to view resource discovery in Semantic Grids as distributed 
RDF query answering on top of a P2P network of Grid resource providers and 
requesters. Our proposal complements well-known Grid information services 
such as MDS4 of GT4 in two ways: 

We offer service providers and service requesters expressive semantics- 
based data models and query languages (i.e., RDF(S) and RQL instead 
of XML and XPath). 

We implement resource discovery using techniques from P2P systems. 
This allows us to achieve full distribution, high-performance, scalability, 
resilience to failures, robustness and adaptivity. Related experimental 
work is presented in [26, 28,271. 
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In the context of OntoGrid, our proposal is realized with the implementation 
of Atlas, a P2P system for the distributed storage and querying of RDF(S) 
metadata describing Semantic Grid resources. 

The rest of the paper is organized as follows. Section 6 briefly discusses 
related work at the crossroads of Grid and P2P computing research. Section 
3 gives a short description of the various components and protocols of Atlas. 
Section 4 shows how to use Atlas for service discovery in OntoKit. Finally, 
Section 5 concludes the paper. 

2. Related Work 
Our research can be understood to lie at the intersection of P2P and Grid 

computing. Although these computing paradigms have different origins and 
have been developed largely independently, there has been a lot of interesting 
work lately at the crossroads of these paradigms [13, 34, 111. 

Previous papers that explore connections among Grids and P2P networks 
can be distinguished in the following categories: 

1 General papers that discuss the similarities and differences of P2P and 
Grid systems pointing out important areas where more work is needed 
[13,34, 111. 

2 Papers where ideas from P2P computing are used in Grid systems. Here, 
we can further differentiate as follows: 

(a) Works where Grid computing problems are given as a primary mo- 
tivation, but the contributions are essentially in the P2P domain 
and can also be applied elsewhere. For example, [4, 23, 71 con- 
sider attribute-value data models that can be used to describe Grid 
resources (e.g., by specifying the CPU power, disk space capac- 
ity, operating system and location of a computer) and show how to 
evaluate queries in these models on top of DHTs (e.g., I am looking 
for an idle PC that runs Linux and has CPU > 3GHz). 

(b) Works where P2P techniques are used to improve functionality in 
existing Grid systems e.g., resource discovery [20, 18, 191 and 
replica location management in Globus [8] or flocking in Condor 
[61. 

(c) Service-oriented application development frameworks that en- 
hance existing frameworks for Web or Grid service computing [I ,  
161 with P2P protocols. 

3 Papers where ideas from Grid computing are used in P2P systems. For 
example, [lo] shows how to implement a P2P data integration frame- 
work using OGSA-DAI [2]. 
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Our work should be classified in categories 2(b) and 2(c) above. Work with 
goals similar to ours that uses description logics instead of RDF(S) is reported 
in [17]. 

3. The P2P System Atlas 

In Atlas, we use state of the art distributed hash table (DHT) technology 
[5] to implement a distributed system that will be able to scale to hundreds of 
thousands of nodes and to large amounts of RDF(S) data and queries. Nodes in 
an Atlas network are organized under the Bamboo DHT protocol [3 11. Bam- 
boo is a DHT based on Pastry [32] from where it takes the circular identifier 
space and the routing algorithms. Bamboo improves on Pastry by being able to 
withstand very dynamic changes in network membership i.e., it is resilient to 
churn [3 11. Like most implementations of DHTs, Bamboo offers a very sim- 
ple interface consisting of two operations: put ( ID, it em) and get ( I D )  . 
The put operation inserts an item with key I D  and value item in the DHT. 
The get operation returns a pointer to the DHT node responsible for key I D .  
Our operations for storing data and querying Atlas, described below, are based 
on these simple operations offered by Bamboo. 

Atlas nodes can enter RDF(S) data into the network and pose RQL queries. 
Two kinds of querying functionality are supported by Atlas: one-time querying 
andpublish/subscribe. Each time a node poses a one-time query, the network 
nodes cooperate to find RDF(S) data that form the answer to the query. In the 
publish/subscribe scenario, a node can subscribe with a continuous query. A 
continuous query is indexed somewhere in the network and each time matching 
RDF(S) data is published, nodes cooperate to notlfi the subscriber. 

The current implementation of Atlas (Atlas v0.6) supports a subset of the 
query language RQL [22] as we explain in Section 3.4 below. The query 
processing algorithm we use for one-time queries is an extension of the algo- 
rithm proposed in [9] for a smaller class of queries based on triple patterns 
[9]. Publishlsubscribe scenarios in Atlas are handled using the algorithms in 
[28,27] that are briefly discussed in Section 3.3 below but have not been fully 
implemented in Atlas v0.6. In the future, Atlas will also support the recently 
proposed RDF update language RUL for inserting, deleting and updating RDF 
metadata [30]. 

Atlas is used in OntoKit for realizing a fully distributed metadata service. 
A high level view of Atlas and the metadata service of OntoKit is shown in 
Figure 1. 

3.1 RDF Documents and Queries in Atlas 

Atlas nodes provide their data in the form of RDF documents [25]. These 
documents are decomposed into RDF triples that are indexed in various nodes 
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Metadata Service 

Figure I .  Atlas and the metadata service 

of the network. A triple represents a statement about a domain and has the 
form (subject, predicate, object) where subject and predicate are URIs and 
object is a URI or a literal. We adopt the triple indexing algorithm presented in 
[9], where each triple is indexed on the DHT three times, once for its subject, 
once for its predicate and once for its object. For each of these storage opera- 
tions we make use of the put operation provided by the Bamboo DHT using 
as key the subject, predicate or object value respectively. The key is hashed to 
create the identifier that leads to the appropriate node where the triple is stored. 

Atlas supports internally the query language TPQL (triple-pattern query 
language) which allows the expression ofpositive (i.e., without negation) con- 
junctive queries where each conjunct is a triple pattern. 

A conjunctive query q is a formula of the form 

where s l ,  . . . , s,, pl, . . . , p, are variables or URIs, 0 1 ,  . . . , om are vari- 
ables, URIs or literals, ? X I , .  . . ,?xk are variables and {?x l ,  . . . , ? xk )  C 
i s 1 , .  . . , Sm,pl , .  . . ,p,, 0 1 , .  . . ,om).  Variables will always start with the '?' 
character. The triple patterns ( s l  , pl , o l ) ,  . . . , (s,, p,, 0,) are the subqueries 
of q. A query will be called atomic if it consists of a single conjunct. 

The class of conjunctive queries can be used to express many interesting 
requests in P2P applications using RDF. For example, assume that a service 
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requester wants to discover a Web service for arranging the repair of a car. 
This request can be expressed as a conjunctive query as follows: 

?x, ?y : (?x, hasServiceKeyword, "Cars") A 

3.2 One-Time Query Processing in Atlas 

In this section, we describe the algorithm for one-time query processing 
in Atlas using terminology from relational databases. Each triple can be un- 
derstood to be a tuple in a relation T R I P L E ( S ,  P, 0)  with attributes S for 
subject, P for predicate and 0 for object. Then, conjunctive queries are 
select-project-join queries over the database that consists simply of the rela- 
tion T R I P L E .  The exact query processing algorithm of Atlas is as follows. 

Let n l  be a node that wants to pose a conjunctive query q of the form intro- 
duced in Section 3.1. Node n l  creates a message 

partialResult, variables, returnAddress) 

and sends it to the node with identifier id using the underlying Bamboo infras- 
tructure. In this message, tr iplepattern is the triple pattern of q which node 
n l  chooses to be evaluated first', id is the identifier obtained by hashing one of 
the constants in triple pattern triplepattern, restTriplePatterns is the list 
of remaining triple patterns of q, partialResult is a relation for partial results 
(see below) which is initially empty, variables is the list of answer variables 
of q, and returnAddress is the IP address of node n l .  

When another node n2 receives the above message queryRequest, it does 
the following. It first computes the bindings of the variables included in 
the given triple pattern by finding the triples in its local database that match 
tr iplepattern.  These bindings form a new relation R with attributes the 
variables in question. If partialResult is empty, then node n2 assigns 
R to partialResult. Otherwise, n2 computes the natural join of R and 
partialResult (i.e., partialResult M R) and assigns it to partialResultt. 
Then, n2 creates a new message 

partial Result', variables, returnAddress) 

 his choice is crucial depending on the metric one wants to optimize; in Atlas v0.6, we simply pick the 
first triple pattedconjunct. 
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When this message is received by another node ns, the same procedure is 
followed. These nodes join the relation R of the bindings they retrieve locally 
with the relation partialResult and send a message to the next node. This pro- 
cedure terminates in two possible ways. Either, the list restTriplePatterns 
becomes empty or the relation partialResult becomes empty. The latter 
means that the current triple pattern does not match with any triples stored 
locally, and thus relation R becomes empty and the join operation results in an 
empty relation. In both cases, a response with the results should be returned 
to node n l  which issued the query. The field returnAddress is used for this 
purpose; it remains unchanged throughout the whole procedure and refers to 
the IP address of node n l .  

The node n, that determines that the query evaluation procedure is fin- 
ished computes the bindings of the answer variables ?xl,. . . , ?xk. In or- 
der to do that, n, computes the projection of relation partialResult on the 
variables included in the list variables and inserts the results in the relation 
variableBindings i.e., 

Then, n, sends a response message queryResponse(variab1eBindings) to 
node n l ,  where variableBindings is a relation with the answer to the query. 

The key idea in the algorithm we described above is that we split a conjunc- 
tive query to the triple patterns that is consists of and evaluate each one at a 
different node of the network. In this way, we try to distribute the responsi- 
bility of answering a query to several nodes. Intermediate results flow through 
these nodes and finally the last one delivers the results back to the node that 
submitted the query. Notice that in order to determine which node will evaluate 
a triple pattern the algorithm uses one of the constants contained in it. Finally, 
the distributed query plan is created once, i.e., at the time that the query is 
submitted. 

In [26] ,  we propose an improved algorithm for the evaluation of conjunctive 
RDF queries on top of DHTs. In this algorithm, the distributed query plan is 
created dynamically by exploiting the values of matching triples found while 
processing the query incrementally. This time we use combination of constants 
in a triple pattern to determine which will be the node to evaluate it. By enrich- 
ing the triple patterns with new values we have more combinations to use. In 
this way, this algorithm distributes the responsibility of evaluating a query to 
more nodes than the previous one. Our initial experiments show a significant 
improvement on load distribution but, on the other hand, there is an overhead 
in network traffic. 
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3.3 Publish/Subscribe in Atlas 

In [28, 271, we propose two distributed algorithms for publishhbscribe on 
top of DHTs when publications are RDF triples and subscriptions are conjunc- 
tive multi-predicate queries. 

In our algorithms, when a continuous query is submitted, it is indexed some- 
where in the network and waits for triples to satisfy it. Each time a new triple is 
inserted, the network nodes cooperate to determine what queries are satisfied, 
compute their answers and create notifications for the subscribers. The case 
of conjunctive queries is an interesting one, since a single triple may satisfj, a 
query q onlypartially by satisfying a subquery of q. In other words, more than 
one triples may be needed to answer a query. Moreover, since the appropriate 
triples do not necessarily arrive in the network at the same time, the network 
should "remember" the queries that have been partially satisfied in the past 
(e.g., by keeping intermediate results) and create notifications only when all 
subqueries of a given query are satisfied. 

We could index queries to a globally known node or set of nodes, but this 
would eventually overload these nodes. In a P2P environment, we want as 
many nodes as possible to contribute some of their resources (storage, cpu, 
bandwidth, etc.) for achieving the overall network functionality. The resource 
contribution of each node will obviously depend on its capabilities, its gains 
from participating in the network, etc. In our work, we make the simplifying 
assumption that all nodes are altruistic, with equivalent capabilities, and, thus, 
can contribute to query evaluation in identical ways. 

Let us now discuss the issues involved in publishhbscribe with conjunctive 
queries. We first consider an atomic query q = (?sl, p l  , ?ol). We can simply 
assign q to the successor node x of Hash(p1) by using the constant part p l  of 
the query. Triples that have predicate value equal to p l  will be indexed to x 
too, where they will meet q. Assume now the atomic query q' = (?s2, pa, 02). 
We can index q' either to node x l  = Successor(Hash(p2)) or to node 
x2 = Successor(Hash(02)). We prefer the second option since intuitively 
there will be more object values than predicate values in an instance of a given 
schema, which will allow us to distribute queries to a greater number of nodes. 
Another solution is to index q' to the node 23 = Successor(Hash(p2 + 02)). 
We use the operator + to denote the concatenation of string values. This is the 
best option because the possible combinations of predicate and object values 
will be greater than the number of object values alone, so this will lead to an 
even better distribution of queries. 

The difficulty with arbitrary conjunctive queries is that they demand more 
than one conditions to be satisfied before the whole query can be satisfied. 
As an example, consider the query q = ql A q2 A q3. Our approach is to 
split the query to the subqueries that it consists of, and to index each subquery 
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separately. Then, three usually different nodes will be responsible for query 
processing regarding q. Each one will be responsible for a single subquery of 
q, e.g., nodes r l ,  r 2  and r3 will be responsible for ql, 92 and q3 respectively. 
These nodes will form the query chain of q, denoted by chain(q). Each one 
of these nodes will monitor the satisfaction of only the subquery that it is re- 
sponsible for. To determine the satisfaction of q, we have to allow some kind 
of communication between these three nodes. In this way, as triples arrive and 
satisfy a subquery e.g., in node r l ,  rl will forward partial results of q to r2. 
Node r 2  will forward partial results that also satisfy the second subquery to r3 

and r3 will realize that the whole query is satisfied and create a notification. 
The first algorithm that we present in [28] creates a single query chain for 

each conjunctive query while the second one creates multiple query chains 
for a single query to achieve a better query processing load distribution. The 
first algorithm of [28] is essentially identical to the one-time query processing 
algorithm discussed in Section 3.2 except that, in the publish/subscribe case, 
it is executed in a reactive manner as matching triples arrive in the network. 
In [28], the two algorithms presented are experimentally evaluated for con- 
junctive multi-predicate queries (i.e., queries where the subject of all the triple 
patterns is the same variable ?s and predicates p l ,  . . . , p, are all constant). 
However, the general idea of these algorithms is easily extensible to support 
the full class of conjuctive queries as we show in the forthcoming paper [27]. 

3.4 The RQL-to-TPQL Translator 

Atlas offers to users the ability to write queries in TPQL or in the well- 
known RDF query language RQL. RQL [22], which stands for RDF Query 
Language, is a declarative language which relies on a formal graph model that 
captures the RDF modelling primitives. The novelty of RQL lies in its ability to 
combine schema and data querying smoothly while exploiting the taxonomies 
of labels and multiple classification of resources. The syntax of RQL includes 
a set of basic queries (e.g. Resource, SubClassOf ( ) etc.) as well as 
SQL-like select - f rom-where queries to iterate over RDF collections and 
introduce variables2. 

Consider the schema of Figure 2 which describes information about Web 
services in RDFS. This example is part of the core services data model used 
in project , y ~ r i d ~ .  Suppose we want to find a Web service for arranging the 
repair of the car. What follows is an appropriate RQL query: 

SELECT X 
FROM {~}ns:has~ervice~escription{~} 

'RQL is implemented in ICS-FORTH's Suite h t t p :  //139.91.183.30: YOYO/RDF/ ' http://www.mygrid.org.uk 



1 9 4  K N O W L E D G E  A N D  DATA M A N A G E M E N T  I N  G R I D S  

haslnpuVOulpul 

ns:hltp://www,mygrid.org,uWontology# 

hasServiceName ~ h asOpe'r@ti_on I 

gWSDL-opetalion 

~ ~ ' i \ ~ " / ~  -- - ---  ~ hasServiceName \, 

& RepairCar-serviee 

"Car Repair Servicer 

Figure 2. 

< _ i >  o,a,, 
Literal 

RDFS schema for Web Services 

• Resource 

i~ Property 

. . . . .  ~ InstanceOf 

WHERE Y like "*car*" 
USING NAMESPACE ns=&http ://www. mygrid, org. uk/#ontology 

In order to support RQL queries in Atlas, we have introduced a module 
responsible for mapping a query expressed in RQL to a query in TPQL, which 
is the query language supported internally by Atlas and described in Section 
3.1. In Atlas v0.6, we do not support the full functionality of RQL but only 
data queries with filtering conditions. 

Recall the RQL query presented earlier, about the discovery of service for 
arranging the repair of  the car. The equivalent conjunctive query is the follow- 
ing: 

?x : (?x, http ://www.mygrid.org.uk/ontology~hasServiceDescription, ?y) 

A ?y l ike  " * car * " 

To design the RQL-to-TPQL translator we have followed the RQL Inter- 
preter architecture developed by ICS-FORTH [14] (see Figure 3). Our imple- 
mentation has been done in Java using the Java Compiler Compiler (JavaCC) 
[3] parser generator. 

The syntax analyser module receives as input a string, representing an RQL 
query, and returns the corresponding CNF syntax tree (if the query is valid). 
The syntax tree is passed to the graph constructor module, which creates a 
graph corresponding to the semantic representation of the query. These two 
modules are based on the code of RQL Interpreter. The translator module 
takes as input the syntax tree and graph of an RQL query and returns the 
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4. Atlas in Operation: Service Discovery in OntoKit 
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In this section, we show how Atlas can be used in OntoKit during service 
annotation and discovery [24]. The whole scenario is depicted in Figure 4. 

OntoGrid is developing annotation technology for Grid services 1331; this 
technology is deployed as the annotation service of OntoKit. For the purposes 
of this section, it is also important to mention another service of OntoKit, the 
ontology service [12]. The current version of the ontology service provides 
a Grid interface to an RDFS store where RDFS ontologies are stored (e.g., 
service ontologies or domain ontologies etc.). 

An ontology for services and various domain ontologies are needed in or- 
der to create a service annotation. Let us suppose that the annotation service 
chooses to search for an ontology about cars in order to annotate a car-repair 
service (the example comes from a car insurance use case studied in OntoGrid). 
The annotation service can pose an RQL query to the metadata service and get 
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1. l want a 

about cars 

Metadata Service 
FROM (X)ns:harSewiceDeocriptbnM 
WHERE Y like "can' 
USING NAMESPACE m - 8h~Jh.mypl.org.IWontoloevI 

Figure 4. Using Atlas for Service Annotation and Discovery 

information about such ontologies e.g., the location and description of a par- 
ticular ontology - let us call it car  - r e p a i r  - o n t o l o g y .  After discovering 
information about car - r e p a i r  - o n t o l o g y ,  the annotation service can re- 
trieve it from the ontology service. 

If the annotation service does not know the ontology for annotating services, 
it has to search for such an ontology as well. An example ontology describing 
services that could be found in this case is the mYGrid service ontology [29]. 
We should mention here that this step may be unnecessary if a specific service 
ontology has been selected for annotating services in OntoKit. 

Using these ontologies, the annotation service can complete the service an- 
notation process. The result of the annotation process will be stored in Atlas 
by calling the UpdateMe tadata operation (see Figure 4). The ontology 
used for describing the service should have been stored previously in Atlas by 
calling the S t o r e o n t  01 o g y  operation. 

Let us suppose now that an OntoKit user wants to discover a service for 
repairing cars. This is accomplished by submitting RQL queries using appro- 
priate service and domain ontologies (see Figure 4). 

Finally, notice that after an annotation is stored, it might be necessary to be 
able to update it. An appropriate update operation can be expressed in RUL 
and executed in Atlas. 
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5. Conclusions 
We have argued that resource discovery services for Semantic Grids can 

be made scalable, fault-tolerant, robust and adaptive, by exploiting distributed 
RDF query processing algorithms implemented on top of DHTs. We have 
discussed the implementation of our ideas in the system Atlas and its role in 
the Semantic Grid toolkit OntoKit. The implementation of Atlas was started at 
the Technical University of Crete and is currently continued at the National and 
Kapodistrian University of Athens. More information on the current version 
of Atlas is available in [21]. Although we have stressed performance issues, 
we have not provided any measurements or experimental results in this paper. 
Experimental results based on simulations can be found in [28] and more 
experimentation is underway [27, 261. Finally, we expect to be able to analyse 
the performance of Atlas soon on real-world wide-area networks using the 
PlanetLab infrastructure. 
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Abstract Computational Grids can be effectively used as an infrastructure for distributed 
data mining and knowledge discovery in large data sets. To utilize Grids for 
high-performance knowledge discovery, software tools and mechanisms are 
needed. To this purpose we designed a system called Knowledge Grid and we 
are implementing its services as WSRF-compliant Grid Services. This chapter 
describes the composition of distributed knowledge discovery services, accord- 
ing to the service oriented architecture model, by using the Knowledge Grid en- 
vironment. We discuss Grid Services for searching Grid resources, composing 
software and data elements, and executing the resulting data mining application 
on the Knowledge Grid. The chapter focuses in particular on the application 
modeling. Applications are designed using a UML model, which is translated 
into a BPEL representation, in turn processed by the Knowledge Grid services 
for its execution. 

Keywords: distributed data mining, Knowledge Grid, WSRF, UML, BPEL. 
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1. Introduction 
Today huge amounts of data are produced, stored, and moved within Grid 

systems as a result of data acquisitions from remote instruments, or scientific 
experiments, simulations, and so forth. Handling and mining large volumes of 
data is still the most critical issue currently affecting scientists and companies 
attempting to make a profitable use of their data. One of the most important 
challenges of the Grid is thus making the production and ownership of such 
data competitive and useful by allowing effective and efficient extraction of 
valuable knowledge from it. To this end, knowledge discovery and data min- 
ing services are needed to analyze the very large amount of data that today is 
distributed over computational Grids. 

The Knowledge Grid [I]  is a framework for implementing distributed 
knowledge discovery tasks and applications in Grids. The Knowledge Grid 
offers to the users a set of services by which it is possible to integrate Grid re- 
sources to support all the phases of the knowledge discovery process, as well as 
single tasks such as data management, data mining, and knowledge represen- 
tation. Previous research activities on the Knowledge Grid have been focused 
on the development of a system prototype by using early Grid middleware, as 
well as the design and evaluation of distributed knowledge discovery applica- 
tions [24]. 

Currently, the Open Grid Services Architecture (OGSA) paradigm and the 
emerging Web Services Resource Framework ( WSRF) family of standards are 
being adopted for re-implementing the Knowledge Grid services [ 5 ] .  These 
services will permit the design and orchestration of distributed data mining 
applications running on large-scale, OGSA-based Grids composed of data and 
compute services available all over the world. 

This chapter describes the development of the Knowledge Grid services by 
using OGSA and WSRF. After discussing design aspects and execution mecha- 
nisms, the chapter focuses on application modeling. It discusses how the appli- 
cation models are represented and supported by the different Grid services for 
their execution over the Knowledge Grid. Applications are modeled through 
UML and translated in BPEL, then they are processed by the Knowledge Grid 
services for their execution on the Grid. 

The remainder of the chapter is organized as follows. Section 2 discusses the 
service-oriented approach and its relationships with Grid computing. Section 3 
describes the implementation of the Knowledge Grid in terms of the OGSA 
and WSRF models. Section 4 discusses application modeling and execution 
plan representation. Section 5 gives some performance data about WSRF ser- 
vice execution. Section 6 briefly discusses related work. Finally, Section 7 
concludes the chapter. 
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2. SOA and the WS-Resource Framework 
The Service Oriented Architecture (SOA) is a programming model for build- 

ing flexible, modular, and interoperable software applications. Concepts be- 
hind SOA are mostly derived from component-based software and the object- 
oriented programming. SOA enables the assembly of applications through 
parts regardless of their implementation details, deployment location, and ini- 
tial objective of their development. 

A service is a software building block capable of fulfilling a given task or 
business function. It does so by adhering to a well defined interface that defines 
required parameters and the nature of the result. Once defined and deployed, 
services operate independently of the state of any other service defined within 
the system, that is they are like "black boxes." Nonetheless, services indepen- 
dence does not prohibit to have services cooperating with each other to achieve 
a common goal. In fact, the final objective of SOA is to provide for an applica- 
tion architecture within which all functions are defined as independent services 
with well-defined interfaces, which can be called in defined sequences to form 
business processes [6]. 

The most important implementation of SOA is represented by Web Services. 
The popularity of Web Services is mainly due to the adoption of universally ac- 
cepted technologies such as XML, SOAP, and HTTP. The Web is not the only 
area that has been attracted by the SOA paradigm. Also the Grid can provide 
a framework whereby a great number of services can be dynamically located, 
balanced, and managed, so that applications are always guaranteed to be se- 
curely executed, according to the principles of on-demand computing. The 
trend of the latest years proved that not only the Grid is a fmitful environ- 
ment for developing SOA-based applications, but also that the challenges and 
requirement posed by the Grid environment can contribute to further develop- 
ments and improvements of the SOA model. 

The Grid community has adopted the Open Grid Services Architecture 
(OGSA) as an implementation of the SOA model within the Grid context. In 
OGSA every resource is represented as a Web Service that conforms to a set of 
conventions and supports standard interfaces. OGSA provides a well-defined 
set of Web Service interfaces for the development of interoperable Grid sys- 
tems and applications [7] .  Recently the WS-Resource Framework (WSRF) has 
been adopted as an evolution of early OGSA implementations [8]. WSRF de- 
fines a family of technical specifications for accessing and managing stateful 
resources using Web Services. The composition of a Web Service and a state- 
ful resource is called WS-Resource. 

The possibility to define a "state" associated to a service is the most impor- 
tant difference between WSRF-compliant Web Services, and pre-WSRF ones. 
This is a key feature in designing Grid applications, since WS-Resources pro- 
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vide a way to represent, advertise, and access properties related to both com- 
putational resources and applications. Besides, the WS-NotiJication specifica- 
tion [9] defines apublish-subscribe notification model for Web Services, which 
is exploited to notify interested clients andlor services about changes that occur 
to the status of a WS-Resource. 

The combination of statefbl resources and the notification pattern can be 
exploited to build distributed, long-lived Grid applications in which the com- 
putation status is managed across multiple nodes, and services cooperate in a 
highly-decentralized way. 

3. WSRF-based Data Mining Services 
The design of the WSRF-based version of the Knowledge Grid benefitted 

from the service-oriented approach used in the original design of the sys- 
tem [I]. That design approach conceived the Knowledge Grid architecture 
and functionality as a set of basic and high-level services that did not pose any 
constraints on the implementation strategy. This choice facilitated re-designing 
the system and implementing the new WSRF-version by maintaining the same 
architecture and exposing the same fimctionalities as Web Services. 

Figure 1 shows the Knowledge Grid architecture, in which each Knowledge 
Grid service (K-Grid service) is exposed as a Web Service that exports one or 
more operations, by using WSRF conventions and mechanisms. 

. - , --. -. -. 

EPMS RPS 

High-level K-Grld Servlces 

Figure 1. The Knowledge Grid architecture. 

The Knowledge Grid services are organized in two hierarchical levels: the 
Core K-Grid layer and the High-level K-Grid layer. The High-level K-Grid 
layer includes services to compose, validate, and execute a distributed knowl- 
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edge discovery computation. The main services of the High-level K-Grid layer 
are: 

The Data Access Service (DAS) manages the publication and search of 
data to be mined (data sources), as well as the search of inferred models 
(mining results). This service exports two operations: publ ishData, 
invoked for publishing a newly available dataset, and searchData, 
invoked for locating data to be used in a data mining computation. 

8 The Tools and Algorithms Access Service (TAAS) is responsible for 
publishing and searching extraction tools, data mining tools, and vi- 
sualization tools. It exports two operations: publ i shTool s and 
searchTools. The first operation is used to publish metadata about a 
data mining tool. As a result of the publishing, a new data mining ser- 
vice is made available for utilization in data mining computations. The 
second operation is similar to the DAS searchData operation except 
that it is targeted to data mining tools. 

The Execution Plan Management Service (EPMS). An execution plan 
is represented by a workflow describing interactions and data flows be- 
tween data sources, extraction tools, data mining tools, and visualization 
tools. The EPMS allows for defining the structure of an application by 
building the corresponding execution plan and adding a set of constraints 
about resources. The execution plan generated by this service is referred 
to as abstract execution plan, because it may include both well identified 
resources and abstract resources, i.e., resources that are defined through 
constraints about their features, but are not known a priori. The EPMS 
exports its functionality through the submit KApp 1 i cat i on opera- 
tion, which receives a conceptual model of the application to be executed 
and generates the corresponding abstract execution plan, which is in turn 
submitted to the RAEMS service (see below) for its execution. 

The Results Presentation Service (RPS) offers facilities for presenting 
and visualizing the extracted knowledge models (e.g., association rules, 
clustering models, classifications). It exports the getResults oper- 
ation, which retrieves results of a performed data mining computation 
and presents them to the user. 

The Core K-Grid layer offers basic services for the management of metadata 
describing features of hosts, data sources, data mining tools, and visualization 
tools. This layer also coordinates the application execution by attempting to 
klfill the application requirements with respect to available Grid resources. 
The Core K-Grid layer comprises two main services: 
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The Knowledge Directory Service (KDS) handles metadata describing 
Knowledge Grid resources. Such resources include hosts, data reposito- 
ries, tools and algorithms used to extract, analyze, and manipulate data, 
distributed knowledge discovery execution plans, and knowledge mod- 
els obtained as result of mining processes. The metadata information is 
represented by XML documents stored in a Knowledge Metadata Repos- 
itory (KMR). The KDS exports two operations: p u b l i s h R e s o u r c e ,  
invoked by the DAS or TAAS services for publishing data or tools in the 
KMR, and s earchRe s o u r c e ,  which is the core-level operation for 
searching data or tools. 

The Resource Allocation and Execution Management Service (RAEMS) 
is used to find a suitable mapping between an abstract execution plan 
and available resources, with the goal of satisfying the constraints (e.g., 
CPU, storage, memory, database, and network bandwidth requirements) 
imposed by the execution plan. The output of this process is an instanti- 
ated execution plan, which defines the resource requests for each data 
mining process. Generated execution plans are stored in the Knowl- 
edge Execution Plan Repository (KEPR). After the execution plan ac- 
tivation, this service manages the application execution and the storing 
of results in the Knowledge Base Repository (KBR). This service exports 
the manageKExecu t ion  operation, which receives the abstract exe- 
cution plan of an application. The RAEMS generates an instantiated 
execution plan and manages its execution. 

The operations exported by High-level K-Grid services (DAS, TAAS, 
EPMS, and RPS) are designed to be invoked by user-level applications, 
whereas operations provided by Core K-Grid services (KDS and RAEMS) are 
thought to be invoked both by High-level and Core K-Grid services. 

As shown in Figure I ,  users can access the Knowledge Grid functionalities 
by using a client interface located on their machine. The client interface is 
an integrated visual environment that allows for performing basic tasks (e.g., 
searching of data and software, data transfers, simple job executions), as well 
as defining distributed data mining applications described by arbitrarily com- 
plex execution plans. The client interface performs its tasks by invoking the 
appropriate operations provided by the different High-level K-Grid services. 
Those services may be generally executed on a different Grid node; therefore 
the interactions between the client interface and High-level K-Grid services are 
possibly remote. 

Besides their specific operations (described above), all K-Grid services 
export three mandatory operations: creat e R e s o u r c e ,  s u b s c r i b e  and 
destroy. The c r e a t e R e s o u r c e  operation is used to create a stateful 
resource, which is then used to maintain the state (e.g., results) of the com- 
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putations performed by the service-specific operations. The subscribe op- 
eration is used to subscribe for notifications about computation results. The 
d e  s t r o y  operation removes a resource. 

• Local interaction 

. . . . . .  • Possibly remote interaction 

Figure 2. K-Grid service design 

The implementation of  a K-Grid service follows the WS-Resourcefactory 
pattern (see Figure 2). In this pattern, a factory service is in charge of  creating 
the resources and an instance service is used to operate on them. Thus the 
createResource mandatory operation introduced above is provided by the 
factory service, while the other operations are exported by the instance service. 
To create a resource the client contacts the factory service, which creates a 
new resource and assigns to it a unique key. The factory service will return an 
endpoint reference that includes the resource id and is used to directly access 
the resource through the instance service. 

3.1 Execution Management 

Figure 3 describes the interactions that occur when an invocation of the 
EPMS service is performed. In particular, the figure outlines the sequence of  
invocations to others services, and the interchanges with them when a KDD ap- 
plication is submitted for allocation and execution. To this purpose, the EPMS 
exposes the submitKAppl i cat ion operation, through which it receives a 
conceptual model of  the application to be executed (step 1). The conceptual 
model is a high-level description of the KDD application more targeted to dis- 
tributed knowledge discovery aspects rather than to Grid-related issues. 

The basic role of  the EPMS is to transform the conceptual model into an 
abstract execution plan for subsequent processing by the RAEMS. It is worth 
recalling here that an abstract execution plan is a more formal representation of 
the structure of  the application. Generally, it does not contain information on 
the physical Grid resources to be used, but rather constraints and other criteria 
about them. 
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- Loul lntersctlon 

------• Posalbly remote interaction 

Figure 3. EPMS interactions. 

The RAEMS exports the manageKExecution operation, which is in- 
voked by the EPMS and receives the abstract execution plan (step 2). First 
of all, the RAEMS queries the local KDS (through the searchResource 
operation) to obtain information about the resources needed to instantiate the 
abstract execution plan (step 3). Note that the KDS performs the searching 
both accessing the local KMR and querying remote KDSs (step 4). 

After the instantiated execution plan is obtained, the RAEMS coordinates 
the actual execution of the overall computation. To this purpose, the RAEMS 
invokes the appropriate data mining services (DM Services) and basic Grid ser- 
vices (e.g., file transfer services), as specified by the instantiated execution plan 
(step 5). The results of the computation are stored by the RAEMS into the KBR 
(step 6), while the execution plan is stored into the KEPR (step 7). To make 
available the results stored in the KBR, it is necessary to publish results meta- 
data into the KMR. To this end, the RAEMS invokes the pub1 ishResource 
operation of the local KDS (steps 7 and 8). 

3.2 Data and Tools Access 
DAS and TAAS services are concerned with the publishing and searching 

of datasets and tools to be used in a KDD application. They possess the same 
basic structure and perform their main tasks by interacting with a local instance 
of the KDS that in turn may invoke one or more other remote KDS instances. 

Figure 4 describes the interactions that occur when the DAS service 
is invoked; similar interactions apply also to TAAS invocations. The 
publishData operation is invoked to publish information about a dataset 
(step 1). The DAS passes the corresponding metadata to the local KDS, by in- 
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Figure 4. DAS interactions. 

voking the publishResource operation (step 2). The KDS, in turn, stores 
that metadata into the local KMR (step 3). 

The searchData operation is invoked by a client interface that needs 
to locate a dataset on the basis of a given set of criteria (step 4). The 
DAS submits its request to the local KDS, by invoking the corresponding 
searchResource operation (step 5). As mentioned before, the KDS per- 
forms the searching both accessing the local KMR, and querying remote KDSs 
(step 6). This is a general rule enforced in all the interactions between a high- 
level service and the KDS when a searching is requested. The local KDS is 
thus responsible for dispatching the query to remote KDSs and for generating 
the final answer. 

The search for a dataset is performed through the searchData operation 
starting from a search string passed by the client. It contains the searching cri- 
teria expressed as attribute-value pairs regarding key properties through which 
datasets are categorized within the system by using metadata. 

The outcome of the searching is a set of URLs pointing to the metadata 
of the datasets corresponding to that searching criteria. These kinds of URLs 
are specifically targeted at the KDS service: it implements, in fact, a custom 
protocol for locating metadata descriptions of Grid resources. 

A KDS URL has the form: 

and uniquely identifies a metadata file in the Knowledge Grid. 
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4. Application Modeling and Representation 

Designing and executing a distributed KDD application over the Knowl- 
edge Grid is a multi-step task that involves interactions and information flows 
between services at the different levels of the architecture. A key aspect in 
the Knowledge Grid is how applications are modeled, and how the application 
models are represented and processed through the different services. 

As mentioned in the previous section, applications are described at a high 
level using a conceptual model, generated by the user through the design fa- 
cilities provided by the client interface. In the current approach we use UML 
to represent the conceptual model of an application. The conceptual model is 
then passed to the EPMS, which is in charge of transforming it into an abstract 
execution plan for subsequent processing by the RAEMS. The execution plan 
is expressed through a BPEL document. The RAEMS is in turn responsible for 
producing an instantiated execution plan and coordinating the actual execution 
of the overall application. 

This section describes the process through which the conceptual model is 
transformed into the instantiated execution plan and how it is then executed on 
the Grid. To describe how the EPMS and RAEMS components enforce such 
a process and interact each other in order to manage a distributed data mining 
application, a sample mining task is introduced and analyzed during the whole 
design and execution phases within the Knowledge Grid environment. 

The application we consider to such purpose is inspired to a real classi- 
fication task that has been tested over the pre-WSRF implementation of the 
Knowledge Grid, as detailed in [3]. The goal of the classification task is to 
generate an intrusion detection model based on the analysis of a dataset con- 
taining network monitoring data. 

While the original dataset is maintained on a single node, the computation 
is distributed across a suitable number of Grid nodes. To this end, a number 
of independent classifiers are first computed by applying in parallel the same 
learning algorithm over a set of distributed training sets, generated through a 
random partitioning of the original data set. Afterwards, the best classifier is 
chosen by means of a voting operation taking into account evaluation criteria 
like computation time, error rate, confusion matrix, etc. 

4.1 Conceptual Model Representation 
The application model must specify, at some level of abstraction, the tasks 

that compose the process, as well as the logic ruling their integration. Many 
formalisms have been traditionally used for modelling application workflows, 
such as directed acyclic graphs (DAGs), Petri Nets, and UML activity dia- 
grams. Many Grid workflow systems adopt standard coordination languages 
such as BPEL [lo] and WSCI [I 11, or XML-based ad-hoc solutions. 
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Within the Knowledge Grid, the UML activity diagram formalism is used 
to represent the conceptua! model of the application, while BPEL is used for 
representing execution plans. The activity diagram represents the high-level 
flow of  service invocations that constitute the application logic, whereas BPEL 
expresses how the various services are actually coordinated and invoked. 

Figure 5 shows the activity diagram for the example described above. The 
sampling activity specifies number and sizes of  the testing sets that are ex- 
tracted from the original dataset. The mining process is invoked in parallel on 
three different nodes. Before that, each testing set is transferred to the related 
node. The resulting models are then moved to the node on which the voting 
activity will take place. 

start 

! 

/ 

/ a p * m ~ o n :  "clammilY" 

• u m * n  • " -  

end 

Figure 5. Conceptual model for the example application. 

Notice that the sampling activity is followed by a fork operator, which spec- 
ifies that the subsequent activity sequences are to be performed in parallel. The 
fork operator is used in combination with a join operator, which prescribes that 
the execution flow can proceed only when all of the incoming branches have 
been performed. Therefore, the voting activity is executed only when all the 
classification model have been computed and transferred on the same node. 

Many details of  the application (such as the data mining algorithm, invoca- 
tion parameters, and so on), are hidden behind the visual notation, but they are 
specified by the designer as properties of  the activities. For example, Figure 5 
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shows some properties for a data mining activity. They represent basic char- 
acteristics of the computations and are stored within the application model as 
activity attributes. This approach for modeling a data mining application ab- 
stracts from details of the Grid infrastructure used to execute the application. 

4.2 Execution Plan Representation 
As mentioned in Section 3, "abstract" and "instantiated" execution plans are 

distinguished. At the abstract level, the execution plan may not refer to spe- 
cific implementations of services, application components, and input data. All 
these entities may be referred through logical names and, in some cases, by 
means of a set of constraints about some of their properties, possibly express- 
ing quality of service requirements. For example, requirements on processor 
speed, amount of main memory or disk space can be used to single out Grid 
nodes, while requirements on Grid software may concern input data or target 
platforms. 

Prior of the application execution, all of the resource constraints need to be 
evaluated and resolved on a set of available Grid resources, in order to choose 
the more appropriate ones w.r.t. the current status of the Grid environment. Of 
course, due to the dynamic nature of the Grid, an abstract execution plan can 
be instantiated into different execution plans at different times. Instantiated 
execution plans include real names and locations of services, data files, etc. 
According to this approach the workflow definition is decoupled from the un- 
derlying Grid configuration. This brings many advantages, such as reusability 
of application models in time and space, easiness of design, etc. 

A Business Process Execution Language (BPEL) document is used to ex- 
press the business logic of the application being modelled. This constitutes a 
fundamental part of both abstract execution plans and instantiated execution 
plans. The main difference among them is that in the BPEL document of the 
abstract execution plan the WSDL of services are used without specifying the 
service locations. On the other hand, in the instantiated execution plan the ser- 
vice locations are included. In both documents services are referred through 
the partnerLinkType element provided by BPEL. This element is able to 
link the BPEL workflow with the WSDL description of each service included 
in it. 

As mentioned before, the translation of the conceptual model (represented 
by the UML formalism) into the abstract execution plan (represented by a 
BPEL document) is performed by the EPMS. To this end, the EPMS incor- 
porates an engine which is able to map the UML operators into corresponding 
BPEL notations. The BPEL notation is explicitly targeted to service invoca- 
tions and thus more rich with respect to the UML one. It includes several con- 
structs for interacting with services at different levels, as well as other BPEL 
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processes, and manipulating and accessing services input messages and re- 
sponses (both through explicit variable manipulation operators and XPath ex- 
pressions). One important feature about service invocation is the availability 
of patterns reflecting the typical invocation mechanisms supported by services 
(one-way, two-way, synchronous or asynchronous). Such basic patterns are 
particularly useful and adaptable to the WSRF context, in which in addition 
to typical Web services invocation mechanisms, the factory pattern is the main 
way for WS-Resources creation, and response messages can originate not only 
from the services to which the requests have been sent. 

Figure 6 shows the structure of the BPEL document corresponding to the 
UML diagram shown in Figure 5. The overall workflow is defined within a 
p r o c e s s  tag. p a r t n e r L i n k s  defines the services involved in the appli- 
cation. Variables used as input and output in service invocations, as well as 
for other purposes (e.g., faults and internal variables) are declared within the 
v a r i a b l e s  section. The s e q u e n c e  tag specifies the main structure of the 
application, including a sampling phase, a set of  parallel activities, and the fi- 
nal voting. The parallel activities are specified using a f l o w  operator, which 
in turn includes three sequences. Each s e q u e n c e  is composed by a set of 
invocations that perform transfer and mining tasks. 

<partnerLinks>: services declarations 

<variables>: input/output messages 

<sequence>: sequence of activities 

< invoke>:  sampling 

< f low>:  concurrent activities 

<sequence>:  mining and tranfers 

<sequence>:  mining and tranfers 

<sequence>:  mining and tranfers 

< invoke>:  voting 

lli il LI,.,I ...... 

Figure 6. Structure of the BPEL document. 
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Figure 7 shows an extract of the BPEL document reporting one of the data 
mining service invocations. Notice that the classification task is invoked after 
the service instance creation and the results notification subscription, following 
the general pattern described in Section 3. 

cinvoke name="DM service creation" 
partnerLink="DMFactoryServiceu 
portType="DMFactoryPortType" 
operation="createResourceu 
inputvariable="DMCreationRequest" 
outputvariable="DMCreationResponse"> 

</invoke> 
. . .  
cinvoke name="DM service subscription" 

partnerLink="DMServiceInstanceM 
portType="DMServicePortType" 
operation="subscribe" 
inputvariable="SubscribeInputMessage" 
outputvariable="SubscribeOutputMessage"~ 

</invoke> 
. . .  
<invoke name="DM service classification" 

partnerLink="DMServiceInstancel' 
portType="DMServicePortType" 
operation="classify" 
inputvariable="ClassificationInputMessage"> 

</invoke> 
. . .  
<receive name="DM service notification" 

partnerLink="DMServiceInstancen 
portType="tns:ProcessPortTypel' 
operation="deliverU 
variable="NotificationMessage"> 

</receive> 

Figure 7. An excerpt of the BPEL document. 

Figure 8 shows the definition of the partnerLinkType for the data min- 
ing factory. This definition has to be included in the WSDL definition of the 
data mining factory service in order to allow its invocation within the BPEL 
process. Similar definitions are also included in the WSDL documents of the 
other services. 

Figure 8. Example of partnerLinkType definition. 

The BPEL and all the associated WSDL documents are passed to the 
RAEMS for the instantiation process. It is important to note that the WSDL 
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documents received by the RAEMS may not include the actual location of the 
service to be invoked, reflecting the fact that this has not been specified by 
the user during the conceptual model definition. Therefore, the RAEMS at- 
tempts to locate suitable service instances that match the service requirements 
specified as WSDL definitions. Whenever an instantiated execution plan is ob- 
tained, the RAEMS is in charge of submitting it to the workflow engine which 
coordinates its execution. 

5. WSRF Service Execution Performance 
In the previous sections we discussed the design of the Knowledge Grid 

using WSRF-compliant services and data mining application modeling in the 
Knowledge Grid based on UML and BPEL. This activity has been preceded by 
a performance evaluation phase in which we analyzed the execution times of 
the WSRF Grid services for estimating the overhead introduced in the remote 
execution of data mining tasks on a Grid. 

To evaluate the efficiency of the WSRF mechanisms discussed through- 
out the previous sections, we developed an experiment in which single 
WSRF-compliant K-Grid services executed the different steps described above 
for invoking the service, creating the resource, and accessing it. The deployed 
K-Grid service exported a service-specific operation named c l u s t e r i n g ,  
as well as the mandatory operations creat  e R e s o u r c e ,  s u b s c r i b e  and 
d e s t r o y .  In particular, the c l u s t e r i n g  operation was used to perform a 
data clustering analysis on a local data set using the expectation maximization 
(EM) algorithm. The K-Grid service and the client program have been de- 
veloped using the WSRF Java library provided by Globus Toolkit 3.9.2. The 
data set on which to apply the mining process contained 17000 instances (with 
a size of 5 MBytes) extracted from the census data set provided by the UCI 
repository [12]. 

After performing 20 independent experiments the execution times of the 
single steps have been measured. The experiments have been executed both 
within a local area Grid scenario and within a wide area Grid. The measure- 
ments showed that the data mining phase represents the 99.5% of the total 
execution time if client and service reside on a local Grid, whereas the execu- 
tion time on the wide area Grid took about 88.3% of total time; the latter case 
included also the data-set download phase which accounted for about 10% of 
the total time. In both cases, the overhead due to specific WSRF mechanisms 
(resource creation, notification subscription, task submission, results notifica- 
tion) was very low with respect to the overall execution time; it accounted for 
an amount of time of about 0.5% and about 1.5% respectively. 

In general, we can conclude that the overhead introduced by the WSRF 
mechanisms is marginal when the duration of the service-specific operations is 
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long enough, as in typical data mining algorithms working on large data sets. 
Therefore, the WS-Resource Framework is suitable to be exploited for devel- 
oping high-level services and distributed knowledge discovery applications on 
Grids. 

6. Related work 
Several Grid-based data mining systems have been proposed (see [3] for 

a quick survey). Among those, two systems that exploit a service-oriented 
approach for providing Grid-based KDD services are Discovery Net [13] and 
Grid Miner [ 141. 

Discovery Net allows users to integrate data analysis software and data 
sources made available by third parties. The building blocks are the so-called 
Knowledge Discovery Services, distinguished in Computation Services and 
Data Services. Discovery Net provides services, mechanisms and tools for 
specifying knowledge discovery processes. 

The functionalities of Discovery Net can be accessed through an interface 
exposed as an OGSA-compliant Grid service. However, Discovery Net cur- 
rently uses an early implementation of OGSA - namely, the Open Grid Ser- 
vices Infrastructure (OGSI) - which has been replaced by WSRF for lack of 
compatibility with standard Web Services technologies. 

GridMiner aims at covering the main aspects of knowledge discovery on 
Grids. Key components in GridMiner are Mediation Service, Information Ser- 
vice, Resource Broker, and OLAP Cube Management. These are the so called 
GridMiner Base services, because they provide basic services to GridMiner 
Core services. GridMiner Core services include services for data integration, 
process management, data mining, and OLAP. The services themselves do not 
communicate with each other. No service is aware of any other existing ser- 
vice. Hence each of them is able to run completely independently. To support 
the individual steps of KDD processes, the output of each service can be used 
as input for the subsequent service. Like Discovery Net, also Grid Miner has 
been implemented on OGSI. 

It can be observed that the Discovery Net approach is similar in many as- 
pects to the approach followed in the Knowledge Grid to provide a service- 
based middleware for distributed data mining. On the contrary, the Grid Miner 
system provides single services implementing the main steps of a KDD process 
and a service composition engine to execute a multi-step data mining applica- 
tion. 

To the best of our knowledge, none of the existing systems makes use of 
WSRF as basic technology. Therefore, the Knowledge Grid is the first sys- 
tem leveraging WSRF for building a comprehensive high-level framework for 
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distributed knowledge discovery in Grid environments, supporting also the in- 
tegration of data mining algorithms exposed through a Web Service interface. 

7. Conclusions 
In this chapter we addressed the definition and composition of Grid services 

for implementing distributed knowledge discovery applications on WSRF- 
compliant Grids. We presented Grid services for searching Grid resources, 
composing software and data elements, and managing the execution of data 
mining applications on Grids. The chapter discussed the definition of data 
mining Grid services in the context of the Knowledge Grid architecture. The 
services and operations presented in this paper allow for data and tools pub- 
lishing and searching, execution submission and resource management, and 
retrieving of the produced results. 

After discussing design aspects and low-level execution mechanisms, the 
chapter focused on the application modeling problem; that is, how the appli- 
cation models are represented and processed through the different services for 
their execution over the Knowledge Grid. This work demonstrated that the use 
of high-level standard formalisms that abstract from Grid architecture details, 
such as UML and BPEL, in cooperation with emerging technologies such as 
the WS-Resource Framework, can be effectively exploited for designing and 
composing distributed data mining applications on computational Grids. Using 
the service-based Knowledge Grid, the data sets and data mining components 
used in knowledge discovery applications can be offered by different providers 
distributed all over the world. 
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Abstract In this paper we address the problem of mining frequent closed itemsets in a 
highly distributed setting like a Grid. The extraction of frequent (closed) item- 
sets is a very expensive phase needed to extract from a transactional database 
a reduced set of meaningful association rules. We figure out an environment 
where different datasets are stored in different sites. We assume that, due to the 
huge size of datasets and privacy concerns, dataset partitions cannot be moved to 
a centralized site where to materialize the whole dataset and perform the mining 
task. Thus it becomes mandatory to perform separate mining at each site, and 
then merge local results for deriving global knowledge. 

This paper shows how frequent closed itemsets, mined independently at each 
site, can be merged in order to derive globally frequent closed itemsets. Un- 
fortunately, such merging might produce a superset of all the frequent closed 
itemsets, while the associated supports could be smaller than the exact ones be- 
cause some globally frequent closed itemsets might be not locally frequent in 
some partitions. To avoid an expensive post-processing phase, needed to com- 
pute exact global results, we use a method to approximate the supports of closed 
itemsets. The approximation is only needed for those globally (closed) frequent 
itemsets which are locally infrequent on some dataset partitions, and thus are not 
returned at all from the corresponding sites. 

Keywords: frequent itemsets, closed itemsets, Knowledge Grid, distributed data mining. 
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1. Introduction. 
Data Mining is the process of extracting knowledge hidden in huge amounts 

of data. The kind of knowledge we are interested in, together with the orga- 
nization of input data and the criteria used to discriminate among useful and 
useless information, contributes to characterize a specific data mining prob- 
lem and its possible algorithmic solutions. Common data mining tasks are the 
classification of new objects according to a scheme learned from examples, 
the partitioning of a set of objects into homogeneous subsets, the extraction 
of rules from a database. Association Rule Mining (ARM) is one of the most 
popular Data Mining topic, and consists in the discovery of rules concerning 
the co-occurrence of items in a collection of set of items. The result of this task 
is a set of rules similar to "a set containing item B and item D will also contain 
item G with a 60%probability ". ARM has been successfully exploited in sev- 
eral fields. A widely known application is the analysis of customer behavior. 
In this case the items are objects sold in a shop, the input sets represents ob- 
jects sold in the same transactions and the expected result is a set of rules about 
items frequently bought in the same transaction. Analyst can use such rules for 
direct marketing, or to reorganize the shop shelves and help the customer in 
the search of commonly associated items, e.g., by placing the barbecue spices 
close to the refrigerator containing meat. 

In this paper we are interested in the most computationally expensive phase 
of ARM, i.e the Frequent Itemset Mining (FIM) one, during which the set of all 
the frequent itemsets are extracted from a transactional database. Informally, 
the FIM problem can be stated as follows: given a transactional database, 
where each transaction is a set of items, extract all the set of items that oc- 
cur frequently in the database. The FIM problem has been extensively studied 
in the last years. The first proposed algorithm is Apriori [2], but many dif- 
ferent approaches have been investigated such as DIC [3], FP-GROWTH [5], 
ECLAT [24] and many others [1, 15,20,7, 101. One of the main issues emerg- 
ing from these studies regards the size of the collection of frequent itemsets 
3 .  This makes the task of the analyst hard, since he has to extract useful 
knowledge from a huge amount of patterns. Consider that the size of .F may 
be comparable with the size of the dataset, when using very low minimum 
support thresholds. 

Closed itemsets are a solution to this problem. For any given collection 
of frequent itemsets 3 ,  there exist a collection of closed itemsets C, which 
is a concise and lossless representation of 3. It is concise because ICI may 
be orders of magnitude smaller than 131. This allows to extract additional 
potentially interesting patterns by using lower minimum support thresholds, 
which are intractable when extracting all the frequent itemsets. It is lossless, 
because from C it is possible to derive the identity and the support of every 
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frequent itemset in 3. Moreover, the extraction of association rules directly 
from closed itemsets has been shown to be more meaninghl for analysts [21, 
231, since C does not include many redundancies that are present in 3. Many 
efficient Frequent Closed Itemsets Mining (FCIM) algorithms have been re- 
cently proposed, such as A-CLOSE [14], CHARM [25], CLOSET+ [16] and 
DCI-CLOSED [8]. 

In this paper we address the problem of mining frequent closed itemsets in 
a highly distributed settings [12, 61, such as a Data Grid. While many papers 
address the problem of parallelldistributed FIM (e.g. PARTITION [17]), to our 
best knowledge, no proposal for distributed closed itemset mining exists. We 
figure out a distributed framework where there are many data sources of in- 
terest, and where we want to extract knowledge from a virtual transactional 
dataset made by joining all those data sources together. We assume that, due to 
the huge size of every single datasets and due to privacy concerns, the original 
datasets cannot be moved to a centralized site where to materialize the whole 
dataset and perform the mining task. Thus it becomes mandatory to apply a 
loosely coupled distributed mining approach, according to which we perform 
separate mining on each site, and then merge the local results to derive the 
global knowledge. 

The main contributions of this paper are the theoretical basis for the dis- 
tributed computation of closed itemsets based on a collect and merge approach. 
In particular, the theorems we have introduced allow to extend previous algo- 
rithms for frequent itemsets (Partition [17] and AP [I  81) to the closed itemsets 
case. 

The rest of the paper is organized as follows. Section 2 presents the FIM 
problem and the concept of closed itemsets. Section 3 discusses the issues for 
realizing a loosely-coupled distributed algorithm, inspired by Partition, for ex- 
tracting all the frequent itemset from an horizontally partitioned transactional 
dataset. Section 4 analyzes the additional challenges that a frequent closed 
itemset mining algorithm has to face, and proposes methods for coping with 
them. These methods are the building blocks of the APClosed algorithm we 
propose. Finally, Section 5 draw our conclusions. 

2. Frequent and Closed Itemsets 
The problem of mining all frequent itemsets from a transactional dataset can 

be stated as follows. Let Z = { a l ,  . .. , a M )  be a finite set of items or singletons, 
and let D = I t l ,  . . . , t N )  be a dataset containing a finite set of transactions, 
where each transaction t is a subset of Z. We call k-itemset a set of k items 
I = { i l  , . . . , ik I i j  E Z). Given a k-itemset I ,  let o ( I )  be its support, defined 
as the number of transactions in D that include I. Mining all the frequent 
itemsets from D requires to discover all the itemsets having support at least 
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- 
a = m i n s u p p  . [Dl, where 0 < m i n s u p p  5 1 is a given minimum support 
threshold. We denote with F the collection of frequent itemsets, which is 
indeed a subset of the huge search space given by the power set of Z. 

As we discussed before, we are going to focus on a significant subset of 
3, composed of only those frequent itemsets that are also closed. To define 
the property of an itemset of being closed, we first introduce two auxiliary 
functions. Given T and I ,  with T C 2) and I c Z, we define the two following 
functions f and g: 

tET 

g( I )  = {t  E D I I C t } .  

Function f returns the set of items appearing in all the transactions of T ,  while 
function g returns the set of transactions supporting a given itemset I .  

DEFINITION 1 An itemset I is said to be closed ifand only i f  

where the composite function c = f o g is called Galois operator or closure 
operator. 

I TID 11 items 

Figure 1. (a) The input transactional dataset, represented in its horizontal form. (b) Lattice 
of all the frequent itemsets (F = I), with closed itemsets and equivalence classes. 

The closure operator defines a set of equivalence classes over the lattice of 
frequent itemsets: two itemsets belong to the same equivalence class iff they 
have the same closure, i.e. they are supported by the same set of transactions. 
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We can also show that an itemset I is closed iff no supersets of I with the same 
support exist. Therefore mining the maximal elements of all the equivalence 
classes corresponds to the extraction of all the closed itemsets. 

Fig. l(b) shows the lattice of frequent itemsets derived from the simple 
dataset reported in Fig. 1 (a), mined with ZY = 1. We can see that all the itemsets 
with the same closure are grouped in the same equivalence class. Each equiv- 
alence class contains elements sharing the same supporting transactions, and 
closed itemsets are their maximal elements. Note that closed itemsets (six) are 
remarkably less than frequent itemsets (sixteen). For example, only the closed 
itemset {ACD) is returned, among the 5 frequent itemsets that are supported 
by the same set of transactions. 

Note that, given the above definition, it is clear that the property of an item- 
set of being closed does depend on the whole dataset. This is because we need 
to apply the closure operator c  = f o g  to understand whether an itemset is 
closed or not. 

In the following we introduce two important lemmas that are going to be 
useful in the next sections. 

LEMMA 2 Given an itemset X  and an item i E 27, g ( X )  C g( i )  H i E c ( X ) .  

PROOF 2.1 Proof. 
h ( X )  C g(i)  * i E c(X)) :  

Since g (X  u i )  = g ( X )  n g(i) ,  g ( X )  c g(i)  * g(X U i )  = g ( X ) .  Therefore, 
i f g (X  u i )  = g ( X )  then f ( g ( X  u i ) )  = f ( g ( X ) )  + c (X  u i )  = c ( X )  * i E 

c ( X ) .  

(i E c ( X )  =+ g ( X )  c g(i)): 
Ifi E c ( X ) ,  then g ( X )  = g(X  U i). Since g (X  U i )  = g ( X )  II g(i), g ( X )  fl 
g( i )  = g ( X )  holds too. Thus, we can deduce that g ( X )  g(i). 

LEMMA 3 I f Y  is a closed itemset, and X  C Y ,  then c ( X )  C Y .  

PROOF 3.1 Note that g ( Y )  S g ( X )  because X  C Y .  Moreovec Lemma 2 
states that i f j  E c ( X ) ,  then g ( X )  E g( j ) .  Thus, since g ( Y )  C g ( X ) ,  then 
g ( Y )  C_ g ( j )  holds too, and from Lemma 2 it also follows that j E c ( Y ) .  So, if 
j &I Y held, Y would not be a closed itemset because j  E c ( Y ) ,  and this is in 
contradiction with the hypothesis. 

3. Distributed Frequent Itemsets 
In a distributed setting, the data are partitioned among several nodes, con- 

nected by networks which possibly have limited bandwidth and high latency. 
In such a context, gathering all data to a central node, in order to apply an high 
performance algorithm, is often impossible, due to either the amount of data 
or privacy reasons. Hence, Distributed Data Mining algorithms typically work 
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by producing a local model per site. Unfortunately, even if local models are 
coherent and accurate with respect to local site repository, inferring a global 
model by aggregating the local models may be very complex. 

In the distributed frequent itemsets case, we have several data sources Dj, 
and our goal is to extract the frequent itemsets in the virtual dataset 2) = U Dj. 
We denote with Fj the collection of frequent itemsets extracted from Dj, i.e. 
having a local support aj at least minsupp . IDj 1. 

It is easy to show that the union of locally frequent itemsets contains the 
global solution. In fact, if D j  is mined using the same relative support threshold 
minsupp, each globally frequent pattern I (a(I )  2 minsupp . /Dl) must be 
locally frequent in at least one partition (ai(I)  2 minsupp . IDj I. However, an 
itemset in U .Fj may be infrequent in one or more Dj, so that its local support 
aj is unknown. If this is the case, we cannot decide whether the itemset is 
globally frequent or not, since we cannot calculate its support C aj. 

A trivial solution to this problem is to mine every locally occurring pat- 
tern, but clearly this would cause a combinatorial explosion. A more viable 
alternative consists in a two phase computation, as proposed by the Partition 
algorithm [17], which can be easily implemented in distributed settings using 
a masterlslave paradigm [9], where each slave is responsible for managing and 
mining a distinct Di. After collecting and merging the local solutions, the mas- 
ter gathers from the slaves the support count of each global candidate itemset 
I E U j  .Fj where I resulted infrequent. We call this straightforward distributed 
version of the algorithm Distributed Partition. 

While the Distributed Partition algorithm is able to return the exact support 
values, it has pros and cons with respect to other distributed algorithms. The 
pros are related to the number of communications and synchronizations. Other 
methods as count-distribution [4,22] require much more communications and 
synchronizations, while the Distributed Partition algorithm only requires two 
communications from the slaves to the master, and a single one from the mas- 
ter to the slaves. The cons are the volume of messages exchanged, and the ad- 
ditional computation performed by the slaves during the first phase. Consider 
that, when low absolute minimum supports are used, it is likely to produce a lot 
of candidate itemsets, i.e. locally frequent itemsets, due to data skew present 
in the various dataset partitions [13]. This has a large impact on the cost of the 
second phase of the algorithm too: most of the slaves will participate in count- 
ing the local supports of these candidates, thus wasting a lot of time. A way 
to work around this problem consists in stopping Distributed Partition after 
the first-pass. We name this naive algorithm Distributed One-pass Partition. 
So in Distributed One-pass Partition each slave independently computes lo- 
cally frequent patterns and sends them to the master which sum-reduces the 
support for each pattern and returns only patterns having the sum of the known 
supports greater than (or equal to) a. 
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Distributed One-pass Partition has obvious performance advantages vs 
Distributed Partition. On the other hand it yields an approximate result. Since 
aj maybe unknown from some data source, the global support a can be under- 
estimated. This not only introduces an approximation in the itemsets support, 
but it may produce a support below a also for globally frequent itemsets. 

In [18-191 we have tried to overcome some of the problems encountered 
by Distributed One-pass Partition and Distributed Partition. We have pro- 
posed the APInterp (Approximate Partition) algorithm that exploits an interpo- 
lation method to infer the unknown support counts, and does not require the 
additional communication and computation cost of a second scan of each Vj  
as in Distributed Partition. 

When APInter, needs to know the support ai(x) of a pattern x in Vi, the 
master of our distributed algorithm infers an approximate value ai(x)interp b Y 
reasoning on the knowledge of 

the exact support of each single item in all Vj,  and 

rn an interpolation factors r(x),  used to infer the unknown support counts 
ai (x) . r (x) is computed on the basis of the exact knowledge of aj (x) 
for all Dj where x has been recognized as a frequent pattern. 

For example, given two itemsets x and x', x' c x, if the exact value of 
aj (x) is known, while ai (x) is unknown, the interpolated value upterp (x) is 
approximated on the basis of the following proportion: 

so that 
- x) - aj (x) - r (x)  

0. ( X I )  where r (x) = a. Note that also a, (x') might be an approximate value 

previously interpolated. Indeed, the actual interpolation factor r (x )  must be 
computed by considering all the known aj(x),  for all V j  from which x has 
been returned as a frequent pattern. 

Table 1 resumes the characteristics of the above algorithms, in particular 
their phases and the approximation of the result. 

4. Distributed Frequent Closed Itemsets 
In this section we discuss how we can exploit the same approach shown in 

Section 3, in order to mine frequent closed itemsets in a distributed setting. 
We need to show that it is possible to perform independent computations 

on each data source Dj, and then join the local result by using an appropriate 
merging operator 63 in order to obtain the global results. From each partition 
we will first mine collections of locally frequent and locally closed itemsets, 
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Table 1. Comparison of the algorithms for Distributed Frequent Itemset Mining presented in 
subsection 3 

Algorithm Phases Results 

Distributed First phase: compute local solutions. Sec- Exact. 
Partition ond phase: merge local solutions to build 

the global candidates. Third phase: check 
the global support of candidates. 

Distributed First phase: compute local solutions. Sec- Approximate: support values 
One-pass ond phase: merge local solutions to build are underestimated. 
Partition the global solution. The support of a pattern 

is the sum of local known support values. 

AP First phase: compute local solutions. Sec- Approximate: support values 
ond phase: merge local solutions to build obtained using interpolation. 
the global solution. The support of a pat- Results similar to the exact 
tern is interpolated from the known support ones [18]. 
values. 

and then we will use such information in order to identify globally closed and 
globally frequent itemsets. 

Hereinafter, we will use the following notation to discriminate between the 
virtual global dataset and local datasets. We define the closure operator over a 
single partition j as the composite function cj (I) = f o gj(I) ,  where 

g j ( I )  = {t  € D j  1 I c t} .  

Finally, we denote with Cj the set of closed itemsets in D j  and with C the 
closed itemsets in D. 

For the sake of simplicity, we limit the following discussion to a setting with 
only two data sources Dl and D2. However, it is trivial to generalize our results 
to an arbitrary number of partitions. 

In the following we will deal separately with the two tasks of the @ opera- 
tor, i.e. reconstructing identities of global closed itemsets and reconstructing 
supports of global closed itemsets. 

4.1 Identities of frequent closed itemsets. 

In this section, since we are only dealing with identities of frequent itemsets 
and not with their supports, we will refer to Cj and C to indicate the result of 
a mining task with a minimum support threshold of = 1. We denote with 
rl the mining function which returns the collection of frequent closed itemsets 
having support at least 1, i.e. appearing at least once in D. 
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In order to define @ we will first solve the simpler problem of having only 
two datasets, where one of them only contains a single transaction. 

THEOREM 4 Given a datasets Dl, and another dataset D2 that contains a 
single transaction t ,  it holds that: 

PROOF 4.1 First we prove that r l ( D 1  U { t ) )  G r l ( D 1 )  U t  U 

( u m  PI) I  f l  t ) .  Let X  E rl (Dl U { t ) )  be a closed itemset. I f X  = t  then 
the theorem trivially holds. I f X  is not a subset o f t  then t $ g ( X ) ,  and there- 
fore X  = f ( g ( X ) )  = f ( g l  ( X ) )  = c1 ( X ) ,  which means that X  € rl (Dl) .  I f  
X  c t,  then X = f ( g ( X ) )  = f ( g l  ( X )  U t )  = f ( g l  ( X ) )  f l  t  = cl ( X )  r l  t  = 
I  n t, where I  E r1 (Dl ) .  

Last we prove that rl (Dl U { t ) )  2 rl ( D l )  U t  U ( u ~ , - ~ ~ ( ~ ~ )  I n t ) .  

Note that an itemset I  is closed ifand only if there is no item i  $ I  such that 
g ( 1 )  = g(I  U i ) ,  otherwise we would have that I  # f ( g ( I ) ) .  

t  is trivially closed, since no other item can be added to t  without decreasing 
d t ) .  

Similarly, each closed itemset in I E Dl is closed in {Dl U t ) ,  since by 
definition gl ( I  U i )  # gl ( I ) ,  and therefore g ( I  U i )  # g ( I ) .  

Lastly, given I  n t where I  is a closed itemset in Dl, we must consider two 
cases too see whether there exists an item i  $ { I  n t )  such that i  E c(I  n t ) .  
Thefirst is when i $ t ,  which means that g(I  f l  t )  # g(I  f l  t U i )  and I  n t  
must be closed. The second is when i E t (i $ I), in which case, i f 1  n t was 
not closed we would have that gl  ( I  n t )  = gl  ( I  n t  U i )  which, by Lemma 3 
implies that i E cl ( I ) ,  i.e. i  E I  which is a contradiction. 

Let us introduce a new operator n , namedpower-set-intersection: 

where P ( S )  is the power set of S, i.e. the set of all possible subsets of S .  The 
power-set-intersection n S  corresponds to the union of all the intersections 
among the elements of every possible subset of S  but the empty set. For ex- 
ample, let S  = { s l ,  s2, s3) ,  we have that n S  = { { s l ) ,  i s 2 ) ,  I s3) ,  { s l  n 
4, (81 n ~ 3 1 ,  is2 n ~ 3 ) ,  { ~ l  n S2  n ~ 3 ) ) .  

Now, we can show another theorem giving a new and interesting insight in 
the problem of frequent closed itemset mining. 
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THEOREM 5 Mining all the frequent closed itemsets from D when = 1 is 
equivalent to applying the power-set-intersection operator to 2): 

PROOF 5.1 We prove the theorem by induction on the number of transactions 
n of D. 

Case n = 1. It is obvious that when the minimum support threshold is 1, the 
only closed itemset in a dataset with a single transaction is the transaction 
itselj Thus: 

r,(n = i t ) )  = t  = n v  
Case n = 2. It is clear that the only closed itemsets are the two transactions 
themselves along with their intersection. Thus: 

Inductive step. Let us assume that the hypothesis holds for all datasets with a 
number of transaction 5 N .  Given a dataset D with N + 1 transactions, let 
D = D* U t*, weprove the inductive step: 

Theorem 5 formally states the equivalence of two different exploration tech- 
niques of the search space. The first one is known as item enumeration, where 
the exploration traverses every possible combination of items, i.e. P(Z) .  The 
second one, which is suggested by the equivalence of rl and n , is known as 
row enumeration, where the exploration takes place by traversing every possi- 
ble intersection of rows of the dataset, i.e. intersections of elements in P ( V ) .  
The first is the most commonly used, since the number of transactions is usu- 
ally orders of magnitude larger then the number of items. Nonetheless, in some 
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biomedical dataset we find the opposite setting and, additionally, the only use- 
ful minimum support threshold is 1, and therefore the second approach has 
been shown to be the only feasible [ l  11. 

Theorems 4 and 5 allow us to come back to the problem of mining frequent 
closed itemsets in a distributed setting. 

THEOREM 6 Given two datasets Dl and D2, the closed itemsets C in D = 
{Dl U 232) can be extracted using only the closed itemsets C1 and C2 that have 
been independently mined from the two datasets, by applying an appropriate 
merging operator @: 

Theorem 6 gives us a way for mining all the frequent closed itemsets in a 
distributed setting, i.e., for extracting r l(Dl U D2). First we can mine sep- 
arately the closed itemsets C1 and C2 from the two partitions. Then we can 
merge these local results by performing an additional mining on the collection 
of locally closed itemsets, and this could be done by applying the power-set- 
intersection operator. 

It is really interesting that we can apply the mining operator rl to a col- 
lection of closed itemsets, or that, in other words, by mining our previous 
knowledge we can obtain further knowledge. This result can be generalized to 
the case of P partitions of 2) by the following Theorem, which can be easily 
shown by induction. 
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THEOREM 7 Given the sets of closed itemsets C1, . . . , Cp mined respectively 
from P direrent data sources Dl,  . . . , Dp, we have that: 

4.2 Support of frequent closed itemsets 
Unfortunately this merging function, when used to combine all locally fre- 

quent closed itemsets extracted from local repositories, i.e., C1, . . . , C,, may 
generate similar problems as those discussed in Section 3 for frequent itemsets. 
A possible solution is to adopt an expensive method like the one suggested by 
the Distributed Partition algorithm, which requires a second global scan of 
each Di to check whether locally frequent itemsets (or closed ones) are also 
globally frequent. In order to avoid this second scan, similarly to APInterp, we 
propose reconstructing the unknown support counts by using an interpolation 
based on known counts. We call this distributed algorithm to extract closed 
itemsets APClosed. 

A further issue that APClosed has to deal with is the final result of the merge 
operator @, which can identify further closed itemsets besides the ones in- 
cluded in C1 U C2 U . . . U Cp. For example, let x be one of these new closed 
itemset x, such that x 6 Ci. However, if there exists y, where y E Ci and 
x c y, we can conclude that x is surely frequent on Di. Unfortunately, in 
order to know ai(x), we have to to infer it from the known support counts of 
their supersets in Di. In particular, it is easy to show that ai(x) is the same as 
the support count of the smallest superset of x belonging to Ci. 

5. Conclusion 
We have addressed the problem of mining frequent closed itemsets in a dis- 

tributed environment. In the distributed mining of frequent itemsets, a three 
steps algorithm is sufficient in order to get exact results. First, independent 
mining tasks are performed on each partition, then the results are merged to 
form a big candidate set, and, finally, an additional check is needed for each 
candidate to retrieve its actual support in the partitions where it was found to 
be infrequent. 

In this paper we investigate the merging step in the case of closed itemset 
mining. We have shown that in this case the merging step is completely differ- 
ent and surely more complex. The theorems that we have introduced, however, 
show how to extend the collect and merge approach to the distributed discovery 
of closed itemsets. 
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Abstract Environmental pollution control relies heavily on human expert judgment sup- 
ported by historical data and scientific models. Telemonitoring, by networks of 
heterogeneous sensor arrays, provides the opportunity for data mining models 
to be constructed from the historical data to supplement human expertise. This 
paper reports some progress made in the TELEMAC project by data mining. 
TELEMAC is concerned with enhancing the efficacy of anaerobic digestion in 
potentially unstable digesters. In the laboratory using full instrumentation it is 
possible to derive a good description of the digester state. With data mining it 
is possible to identify some constraints on sensor choice. This paper examines 
this data mining work from the perspective of a three layer Grid architecture 
to see what implications and requirements arise that could benefit the exercise 
of expert judgment. After placing the specific TELEMAC situation in a generic 
Grids context, we present a classification approach to attributes for metadata and 
indicate some examples of model resource discovery. 

Keywords: anaerobic digestion, data mining, telemonitoring and control, wastewater treat- 
ment. 
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1. Introduction 
Networks of sensor arrays, measuring properties of multiple instances of 

some physical process, raise some important issues in the context of Grids. 
An example is provided by the TELEMAC project [I], a European Union 
funded project on anaerobic wastewater treatment, in which individual treat- 
ment plants are equipped with a variety of sensors. The aim of TELEMAC is 
to improve the monitoring and control of digesters from a central telemonitor- 
ing and control centre, TCC [2]. The control of these plants could benefit from 
data mining and the leveraging of knowledge through the TCC. 

Although the TELEMAC project was not conceived as a Grids project, 
nonetheless there is clear potential for applying Grid technologies. The focus 
is on three levels of grids: knowledge, information, and data rather than com- 
putation. Issues that arise include: 1) data heterogeneity, 2) the data mining 
methods themselves, 3) timebased issues, such as the updating of data mining 
models, 4) the role of human expertise. 

In TELEMAC a user interacts with a heterogeneous environment of 
databases and data collection sensors. Grid technology could provide a stan- 
dard framework for the interoperation of the distributed sites. In some views of 
Grids, metadata, agents, and brokers are key architectural components. Para- 
phrased here are observations from Jeffery [3] relevant to TELEMAC: "Meta- 
data: Most examples of metadata in use today are neither structured formally 
nor specified formally so tend to be of limited use for automated interopera- 
tions and consequently require human interpretation. AgentdBrokers: Agents 
use metadata to take action; they can provide a monitoring function. Brokers 
act as go-betweens for agents." 

This paper uses the experience of TELEMAC for illuminating some de- 
sign issues for this class of application in a Grids environment. The paper is 
structured as follows. Section 2 considers the industrial context and associated 
biochemical processes. Data mining in TELEMAC is discussed in Section 3; 
the issues of sensor arrays, the role of sensor ranking, and diversity of sen- 
sors are addressed in a data mining context. Examples of data mining results 
are presented. In Section 4 we consider TELEMAC from the perspective of 
the three layer architecture Knowledge, Information, and ComputationIData 
Grids. It is here we address the issue of leveraging knowledge and grid re- 
sources. The role of human expertise in providing knowledge management in 
the plant monitoring and control cycle is presented and this shows the way the 
three Grids interact in this type of environment. In Section 5 we identify some 
specific attributes that are useful in the metadata for our data mining models 
and resources. A short summary of our conclusions finishes the section. 
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2. Industrial context 

Anaerobic wastewater treatment is an important technology for the disposal 
of certain kinds of waste, in particular the by-products from alcohol produc- 
tion in wineries and distilleries [4]. It has great advantages such as efficiency, 
low production of sludge, and the possibility of energy recovery through co- 
generation. However it is an unstable process which is difficult to monitor and 
control with the consequence that plant is operated at low efficiency. Expert 
knowledge is required for efficient operation of the plant but that expertise is 
unlikely to be locally available at small, possibly remotely located, individ- 
ual plants. Therefore the role of the TCC is crucial here in supporting ex- 
pert human knowledge by a range of analysis and prediction techniques. The 
anaerobic digester plants operate on a range of engineering principles such 
as upflow sludge blankets, lagoons, upflow fixed-beds and continuous stirred 
tanks, CSTRs. Within TELEMAC there is a preponderance of CSTRs at the 
industrial level with typical volumes of 500 to 5000m3. The chemical oxy- 
gen demand, COD, of the wastewater is one measure of the outflow quality; 
organic loading rates within the digesters vary between 2kg and 20kg COD 
m-3d-1. Measurement of COD is generally not available on-line [2 ] .  

Fast VFA Organic -+ ' low CH4 
Carbon + 

In hibition 

Figure 1. The biological process for anaerobic waste water treatment. 

The biological process has two main steps; these are shown in Figure 1. In 
the first step a set of acidogenic bacteria generate volatile fatty acids and carbon 
dioxide. This conversion proceeds at a fast rate. Volatile fatty acids themselves 
are acetates and acetic acid or similar. The second step is a slow conversion of 
the volatile fatty acids to methane and more carbon dioxide by methanogenic 
bacteria. The problem is that a build up in the concentration of volatile fatty 
acids inhibits the methanogenic bacteria. This can lead to suppression of the 
second stage and ultimately to irreversible destabilisation of the digester; then 
it could take a period of several weeks or even several months to recover. A 
converse problem occurs if the digester is hydraulically overloaded and the 
biomass is washed out. 
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3. Data mining in TELEMAC 

3.1 Introduction 
The biological and chemical processes involved in anaerobic digestion are 

complex but there is good qualitative understanding of the main features. Al- 
though analytical models have been developed [ 5 ] ,  there is still much scope 
for data mining of sensor data to complement them. Data mining helps to an- 
swer both static and dynamic questions, such as which sensors form the mini- 
mum set required for accurate estimation of key variables like concentration of 
volatile fatty acids, or what is the likely future value of such a variable given 
the current state of the digester plant [6 ] .  

3.2 Sensor ranking and diversity 
A wide range of sensors are commercially available for use with anaerobic 

digesters. Characteristics of these and research sensors are summarized below. 

3.2.1 Sensor types. 1) Classical plant instruments such as gas and liq- 
uid flow meters, pressure and temperature gauges, 2) Titrimeter to measure 
acid and base concentrations (up to 4 variables), 3) Infra-Red spectrometer 
(up to 5 variables), 4) TOCmeter to measure total organic content, 5) Thermal 
conductivity sensor for C02. 

3.2.2 Sensor modes. 1) Online sensors return a value at measurement 
time, 2) Offline chemical analysis returns a measurement significantly later and 
may be different in value than from an online measurement. 

3.2.3 Sensor problems. 1) Sensor reliability - failure due to lack of pre- 
cision, saturation, lag in recovery of measuring capacity, foaming in digester, 
and contamination, 2) Sensor accuracy - calibration, standard setting. 

In Figure 2 tempdig is the temperature, gin is the influent liquid flow rate, 
phdig is the pH, qgas is the biogas flow rate, co2gas is the percentage of carbon 
dioxide in the biogas, vfadig is the concentration of volatile fatty acids, tocdig 
is the concentration of total organic content, and coddig is the concentration of 
chemical oxygen demand. With a full set of sensors it is possible to get a fairly 
complete chemical description of the current digester state. The figure shows 
expert judgement of the ranking of sensors by expected availabilitylreliability, 
with the simplest and most robust in the inner ring. These four levels of sensor 
are relevant when dealing with operational industrial systems which would 
lack such full instrumentation. 
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Figure 2. Venn diagram showing sensor ranking. The sensors are defined with their Level. 
Suffix dig indicates measurement of the digester content. 

3.3 Data mining techniques used 
3.3.1 Classification and Sequencing. A key aspect in assisting the di- 
gester expert to form a judgement is to characterise the data to form a set of 
digester states. This was done using cluster analysis. Although it is possible 
for a cluster analysis algorithm to select the number of clusters, the decision is 
in general hard to justify to the expert. Therefore some analysis using a range 
of cluster numbers was undertaken. It was found that with these datasets, a pro- 
gression from small but numerous clusters to larger and fewer gave a relatively 
stable cluster assignment. This gave some confidence that the assignment to 
clusters is not arbitrary for these datasets. Having obtained some clusters, an 
analysis of time-based cluster sequences was also undertaken which gave a set 
of transition frequencies [7] .  

3.3.2 Regression models. Regression models have been used for sev- 
eral purposes: 1) Models for predicting data values for missinglfaulting sen- 
sors were constructed with associated predictions of confidence intervals. This 
has allowed both current prediction and short term forecasting of the concen- 
tration of dissolved and suspended organics during sensor failure. 2) Highly 
accurate short term forecasting is feasible using multivariate autoregression; 
with reliable sensors this could be used for plant control. 3) Predictions from 
auto-regression are of little use over extended time on occasions of sensor(s) 
faulting, a frequent occurrence, because the models depend on known target 
values at previous times. Non linear multivariate regression performs satisfac- 
torily for current and imminent states. 

The models need to be evaluated against an independent test set of data to 
ensure that the model training does not result in over-fitting to errors in the 
training data. Statistical tests for quality of fit need applying. Such tests in- 
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clude residuals, mean squared and mean errors, squared Pearson correlation 
function (R2), and paired sample t-tests for means. A range of models needs 
to be deployed. Linear models can provide good starting pointers. In some cir- 
cumstances they can be sufficient in themselves E.g. for the most extensively 
instrumented digesters. In other cases artificial neural net models provide a 
markedly superior model judged by out-of-sample test set estimates. Unit root 
tests aid a decision on whether to model in differences or levels. 

3.4 Examples of work done 
Data mining has shown that 1) It is feasible to determine the ranking of sen- 

sors; E.g. in order to estimate a Level4 variable (Levels as in Figure 2) it is 
considerably better to have at least one Level3 sensor dataset (coddig requires 
either Level3 vfadig or Level4 tocdig). 2) Features between variables can mean 
that a second sensor adds little to the improvement of a model. E.g. strong co- 
linearity means that if tocdig data is available then vfadig adds little additional 
modelling power. 

ElapseTime l days 

Figure 3. Forward prediction of coddig for 0.25days. Prefix or suffix of NNR or LR indicates 
neural net or linear regression respectively; res denotes residual. 

Figure 3 shows a forward prediction of O Z d  for an INRA validated dataset 
using the sensor variables from Levell, Level2, and Level3 inputs to predict 
a Level4 variable, the concentration of coddig in gllitre. It compares the in- 
dependent test set experimental data with the prediction of a neural net model 
and also shows the residuals on the left hand scale. The model had 8 logistic 
fimctions in two hidden layers (as 5+3) with tempdig eliminated; R2=0.945, 
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t-pair=1.3, mean residual error = 0.031, predicted mean square error=0.332. 
The residuals for a corresponding linear regression are shown on the right hand 
side scale. ~ ~ = 0 . 9 3 0  (in sample ~ ~ = 0 . 9 2 8 ) ,  t-pair=0.21, mean residual error 
= 0.014. Figure 4 compares the independent test set experimental data with the 
prediction of a neural net model. 97% of the actual experimental data points 
fall within the 95% prediction confidence band. 

Figure 4. 95% prediction confidence bands [6]  from forward prediction of 0.25days for a 
validated dataset for the concentration of coddig in gllitre. 

3.5 Some issues of heterogeneity 
In addition to the usual problems of heterogeneity associated with data and 

their schema such as consistency of names, scaling, units, and applicability 
range there are some heterogeneities which affect data mining models from 
arrays of sensors. Data heterogeneity arises at two levels, from the diversity 
of sensors installed on what are essentially different instances of the same pro- 
cess, and from intrinsic differences between processes. For the first of these, 
unavoidable heterogeneities arise from the following: 1) different types of sen- 
sors measuring a given physical quantity by a different process, 2) different 
initialisation calibrations of the same sensor types, 3) complete failure of a 
sensor, 4) partial failure of the sensor through contamination, saturation, or 
drift, 5) different sampling frequencies and process time-constants. 

Also the anaerobic digesters themselves operate on different principles and 
are of different sizes. There are practical heterogeneities that arise from scaling 
variables; sometimes a key dimension is unknown or changing. However, these 
issues of heterogeneity have not been fully explored in TELEMAC. 
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4. The Grids context 

4.1 Telemonitoring and control: the TELEMAC concept 

Figure 5 shows how the TELEMAC project represents an important ad- 
vance in remote monitoring and control of wastewater treatment plants. Pro- 
file 1 shows the traditional practice on an isolated plant. Profile 2 shows how 
TELEMAC laboratory prototypes evolved. Profile 3 shows the full TELEMAC 
solution to sharing expertise while maintaining local control. The Database, 
Telemonitoring system and Expert are based at or accessible to the Telemon- 
itoring and Control Centre (TCC) and are remote from the local user. Other 
components in Profile 3 are local to individual plants. The icons for the local 
user show the transition from puzzled in Profile 1 to enlightened in Profile 3. 

Telemonitoring and 
control 

, .............. - - . -  user 

Figure 5. The evolution of monitoring and control of wastewater treatment plants. 

Profile 3 introduces the monitoring and control of multiple plants from a 
single remote centre, the TCC. This is a step towards a full Grids-based sys- 
tem, though there is as yet no concept of identifying and combining resources 
according to specific needs: the system components and linkages are prede- 
fined and inflexible. It is possible to abstract the essential components of the 
above model so as to prepare for a Grids-based solution. 
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The Local user needs to be able to operate the plant in normal mode and 
receive warning of possible excursions. Users will seek and receive advice 
from a Remote Expert. 

The Remote expert needs to monitor each individual plant, compare with 
reference models, issue advice and alerts to local operatorslusers. The remote 
experts service a TCC. 

The Local plants can differ. Different plants have different arrays of sen- 
sors, have different volumes and operating principles. Each plant has its own 
data validation and consistency check for fault detection and isolation, FDI. 
Individual variables and combinations of variables are validated. In laboratory 
prototypes, multiple sensor consistency for the same variable can be used for 
calibration. Outputs of the FDI are used to provide robust control guidance. 
Each plant is serviced by a TCC; of course a single TCC may service multiple 
plants. 

The Telemonitoring and Control Centre receives and stores validated data 
from local plants. It provides advice from monitored data in response to en- 
quiries. It pools models to generalise expertise. It revises models as new situa- 
tions are recognised. The TCC is responsible for holding the models and data 
for its plants. There are mathematical analytical and simulation models as well 
as data mining models. 

4.2 Knowledge, information, computationldata Grids 
A general architecture has been proposed for structuring knowledge, infor- 

mation, and datalcomputation in a Grids context [8]. This architecture, shown 
in Figure 6, represents the conversion of data to knowledge and then using 
the knowledge to exercise control. Explicitly the control is over the data and 
its processing but ultimately it is concerned with changing the data in the real 
world. Homogeneous access to heterogeneous distributed data occurs in the 
information layer. As well as including data mining technology the knowl- 
edge layer encompasses human experts and decision makers. This model is 
therefore compatible with the approach taken in TELEMAC. 

4.3 The Grids perspective for leveraging knowledge 
Figure 7 shows the mining of historical data to produce reference knowledge 

and models that can be applied to current behaviour of the digester plant. The 
cycle is closed by the observation of the resulting behaviours leading to a need 
for remining if there are deviations from what was expected. The ovals with 
broken lines indicate opportunities for leveraging knowledge obtained from 
elsewhere. For example, reference knowledge obtained about the behaviour 
of a digester in a state of hydraulic overload might be generalisable to other 
digesters of the same class, and usable in managing such states in future. 
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Figure 6. The Knowledge, Information, ComputationIData Grids [8] 

Historical I he knowledge management cycle 

d Scope for leveraging 
knowledge from 
elsewhere 

Figure 7. The knowledge management cycle. 

Large companies are likely to opt for an intra-company TCC while the many 
small wineries might collaborate through geographically local TCCs. In either 
case there is scope for leveraging knowledge that has been derived about a par- 
ticular situation by applying it in other circumstances, typically to a different 
plant. This leveraging should be done in a transparent way. It is therefore 
anticipated that a Grids infrastructure will provide the appropriate user trans- 
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parency for this to proceed because it provides access to resources. Now it is 
not necessary for the Remote Experts to be located at every TCC. 

4.4 Grid resources 

With reference to Figure 7, it is possible to identify a number of classes of 
resource that can enable the leveraging of knowledge. These are: 

Data mining tools. A selection of tools and methods such as those men- 
tioned in Section 3.3 may be available at the TCC. Not every TCC will have 
the same set, so there is potential for offering the tools themselves for use as a 
resource. 

Datasets. Datasets from sensor data are steadily accumulated at the TCC 
and constitute the raw material for data mining that is a valuable resource in its 
own right. An ontology for resolving heterogeneities needs to be included. 

Mined data. The results of the data mining, in the form of neural nets, 
rules, and clustering parameters are obviously of potential value in dealing 
with situations on other plants. This is the classic example of transferring 
knowledge from one plant to another. 

Human expertise. It is important not to forget that the expertise of the 
remote experts is itself a kind of resource that can benefit the operation of 
multiple plants in a Grid. 

5. Grids based approach to TELEMAC 

5.1 Generalising the problem 

From a Grids perspective we can consider each network to consist of a set 
of nodes (in TELEMAC each of these is the local computer associated with a 
digester) and a set of decision support centre nodes (in TELEMAC a TCC). 
Figure 8 shows a network of sensor arrays. The sensors are labelled for re- 
porting variables A,B,C,D,E etc. Al ,  A2 are two different sensors reporting 
on variable A. The plants local computer acts as the node, validating the data 
for that plant, and passing it to the TCC. In some circumstances control action 
may be passed from the TCC to a node for action on the plant controls. In 
Figure 9 the decision support centre node comprises the remote experts, the 
validated data and models, and the data mining and knowledge investigation 
tools (DMKI). 

5.2 Metadata 

Metadata is required in a Grids system to represent properties of the Grid 
resources and allow reasoning over them to locate and deploy resources. 
The terms applicability, transformability, and reliability emerged as important 
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Figure 8. A network of sensor arrays. 

TCCl 
- -__ TCC3 ----.._ 

Remote experts exoertise 
Remote experts 

Figure 9. A network of data, information and knowledge sharing. 

metadata attributes for reworking TELEMAC in a Grids architecture. These 
terms are discussed in relation to the data mining models and resources. 
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5.2.1 Data mining models. Applicability: this class of metadata iden- 
tifies circumstances under which the model can be deployed with confidence 
on the basis of the model generation E.g. the type of process, and the range of 
sensors available. It would normally be based on expert knowledge. 

Transformability: this metadata identifies expert judgement about 
whether the models estimates can be used in (gu)estimating different regimes. 

Reliability: this metadata identifies the confidence in the derivation of the 
model viz: the goodness of the model assessed using training and testing data, 
and any constraints that need to be considered. 

Applicability 
Absolute characteristic 
Variable characteristics 

t Characterised by range of sensor values themselves 
Characterlsed by qualltat've states (e g "hydraulic overload) 

Transformability 
Non-scaling quantity (e.g, temperature, pH) 
Scaleable by fixed physical dlmenslons (e.g volume) 
Scaieable by varlable pmpertles (e.g, flow rate) 

Reliability 
Direct assessment (e.g. prediction intervals) t lndlrect assessment 

Amount of data on which based 
LValidation data 

Figure 10. Metadata about datasets archived and available for data mining 

5.2.2 Data mining datasets. Figure 10 shows the metadata relating to 
datasets available as a Grid resource. 

Applicability: 
Absolute characteristic: this is a fixed feature of the system that never 

changes e.g. digester process type but not a potentially varying characteris- 
tic such as internal volume. 

Variable characteristics: Generally each variable series is characterised by 
statistical summary data such as stationarity or variance. The series from the 
sensors are considered individually to determine the span of the variable and 
missing values. Qualitatively different behaviours of the digesters are charac- 
terised as states bound by ranges on subsets of the variables. Using these states 
an expert would be able to assess a priori whether they were not suitable for 
modelling other states e.g. data relating to hydraulic overload would not give 
a good indication of the behaviour of organically overloaded states. 

Transformability : 
Direct instrument readings sometimes need transforming to a consistent 

scale. 
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Non-scaling: these are quantities that typically have a direct scientific role 
such as temperature and pH. 

Scalable by $xed physical dimensions: typically converts extensive to in- 
tensive e.g. using volume to scale biogas flow rates to m-3d-1 or to convert 
between time and frequency. Within this category we include time scale syn- 
chronisation where a variable is mapped to a different interval. 

Scalable by a variable: maps to a new variable of interest E.g. using differ- 
ences to remove a trend in a variable or produce a derived variable E.g. HRT is 
Volume/iinflow-ratei which is the length of time taken to feed into the digester 
the volume of liquid equal to the digesters volume. 

Reliability: 
Direct assessment: These are methods where the prediction on the target 

data generates an estimate of the error. E.g. Prediction intervals can be ob- 
tained directly from neural net models of the unseen targets. Bootstrapping 
is widely used as an alternative approach for non-heteroskedastic data; it pro- 
duces multiple models each on a variant of the training data. 

Indirect assessment: These are methods where an estimate of the error is 
based on the quality of the model fit to its training and validation data. e.g. 
information criteria and characteristics of residuals in linear regression. 

5.3 Resource discovery 
Having established a collection of resources with associated metadata, re- 

source discovery proceeds by locating resources that satisfy the current needs 
of the user (at a TCC). Urgency and novelty of the digester state are factors 
that need to be taken into account when identifying potential resources such 
as data mining models that can be deployed. If a digester is in an alarming 
state which the Remote Experts have never seen before, then the experts would 
cast the net wider to look for resources that might help with the situation - ac- 
cepting data mining models that are less reliable, for example, because at least 
they might offer some information of value. The broker would seek resources 
using such criteria [3]. Firstly it would need to match digester type and sensor 
set available in the archive; it would perform measurement unit conversion as 
appropriate. Then a suitable set of models would be selected with appropriate 
guidance. The system may even provide the Remote Expert with functionality 
that will advise on the urgency of the problem and whether it is novel. 

5.4 Conclusions 

TELEMAC is representative of a class of systems: networks of sensor arrays 
with significant heterogeneity and varying reliability. The sensors respond and 
report at different frequencies. Over time models need to be updated episodi- 
cally as new data changes the characteristics being monitored. Expert knowl- 
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edge can be deployed in different ways from advisory to automatic control. 
The knowledge base is used to infer behaviour of systems with different char- 
acteristics. The Grids architecture provides a knowledge, information and data 
architecture that enables a structured approach to developing this class of sys- 
tem. 
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