
A Performance Study of Cosmological Simulations onMessage-Passing and Shared-Memory Multiprocessors �Marios D. DikaiakosDepartments of Computer Science-Engineering and AstronomyUniversity of Washington, Seattle, WA 98195marios@astro.washington.eduJoachim StadelDepartment of AstronomyUniversity of Washington, Seattle, WA 98195stadel@astro.washington.eduMarch 15, 1995AbstractIn this paper we describe PKDGRAV, a parallel hierarchical tree-structured codeused to conduct cosmological simulations on shared-memory and message-passing multi-processors. We explore performance traits of cosmological N-Body simulations on 32K to1.3 million particles, running PKDGRAV on KSR-2 and Intel Paragon multiprocessorswith up to 128 nodes. We quantify the computation and communication requirementsof PKDGRAV and study its scalability. We show that the shared-memory implementa-tion performs and scales better than the message-passing. We investigate the causes ofpoor scalability of the Paragon implementation and identify an implementation-speci�cperformance bottleneck in the software cache mechanism pertinent to the Paragon im-plementation.1 IntroductionThe N-Body problem addresses the evolution of systems of particles (bodies) under theinuence of Newtonian gravitational forces. N-Body simulations proceed for hundreds orthousands of time-steps, each time-step computing the force on every particle and updatingits position in space. E�cient algorithms for the N-Body problem construct a hierarchical�Support for this research comes from the NASA Earth and Space Sciences High Performance Computingand Communications Program. We thank the San Diego Supercomputing Center for providing us with IntelParagon time for our runs. 1



description of the mass distribution (a tree) and traverse it performing exact or approxi-mate calculation of interactions. The parallel implementation of these hierarchical methodsentails expensive, unstructured computations on huge data-sets and non-uniform communi-cations [1, 2, 24, 28]. Consequently, a lot of attention has been focused upon the developmentand performance evaluation of parallel N-Body algorithms [1, 4, 13, 32]The purpose of this paper is to explore the performance behavior of PKDGRAV, a\production-quality," tree-structured, gravity code running on message-passing (INTELParagon) and shared-memory (KSR-2) multiprocessors. PKDGRAV is being developed bythe High-Performance Computing and Communications group at the University of Wash-ington, for NASA's Earth and Space Sciences Project. The goal of this e�ort is to conductparallel cosmological N-Body simulations, to calculate the nonlinear �nal states of theoriesof structure formation, to design and analyze observational programs, and to assess the per-formance of state-of-the-art parallel machines [24]. In our work, we investigate basic traitsof cosmological N-Body simulations of practical interest, quantify their computation andcommunication requirements, and study their scalability. Furthermore, we analyze causesof bad performance and identify signi�cant bottlenecks. Finally, we seek to understand thepractical limitations of parallel algorithms employed, and assess the overhead introduced bytheir parallel implementation. Such a study is critical for guiding program and algorithmicdesign towards the achievement of faster, more portable, and higher quality cosmologicalsimulations [24]. Moreover, it is helpful in exploring software and hardware aspects ofstate-of-the-art parallel computers that a�ect application performance, and in comparingthe relative merits of di�erent architectural and programming paradigms.So far, a number of research projects have focused on studying the performance of paral-lel, hierarchical N-Body algorithms [18, 29, 10, 11, 22]. Conducting performance analyses ofsuch parallel applications, however, is a di�cult task for a variety of reasons, including thehigh computational requirements of these algorithms, the great volume of instrumentationdata, the intrusiveness of instrumentation, and the low availability of large multiprocessorsystems. To cope with these problems, most studies focus on \kernels" of N-Body codes,examine problem-instances of small data-sets, produce a few performance metrics over asmall range of problem and machine sizes, or rely on analysis, simulation and modeling.Our approach di�ers, as: 1) We examine parallel codes developed and used by Astronomersto conduct research in Astrophysics (see [24]). 2) We run and evaluate these codes on data-sets of astrophysical interest. 3) We use parallel machines with the same architecture andsize with those employed for \production" runs.We take this approach because we are interested primarily in the e�cient parallel im-plementation of the tree-codes developed by our group, rather than in conducting a moretheoretical study of tree-algorithms. Notably, experience has shown that, when it comesto practical parallel performance, physical details are important. For example, the paralleltimes of two N-Body simulations of similar size running on the same architecture, can bevery di�erent if di�erent criteria of physical accuracy are used 1 . Moreover, our experimentsshow that interesting bottlenecks appear only on runs involving many processors and large1For a discussion on accuracy criteria of N-Body simulations, see the N-Body Constitution in [24]2



data-sets; that is, on runs of practical interest!The rest of the paper is organized as follows. The next section gives a brief surveyof cosmological N-Body simulation and the hierarchical tree-algorithm employed in PKD-GRAV. In Section 3 we discuss our experimental methodology. In Section 4 we present ourmeasurements, explore the performance traits of the codes, and discuss performance bot-tlenecks. Section 5 looks at scaling issues for the INTEL Paragon implementation. Finally,Section 6 presents our conclusions and summarizes our results.2 The Parallel k-D Tree Gravity CodeThe N-Body problem addresses the gravitational evolution of astrophysical systems. Itmodels the dynamical changes of a continuous mass distribution by approximating it with anumber of particles interacting solely under the inuence of gravity. The most computation-ally expensive part of this calculation is comprised of 12N(N � 1) gravitational interactionsbetween the N particles that represent the mass distribution; these interactions must beperformed for 500 to 10,000 time-steps for typical astrophysical simulations. The valuesof choice for N are critical for the quality of astrophysical simulation results (see Figure 12). It is important to use values of N that do not compromise the validity of models forthe set of physical phenomena under investigation. To this end, N should be greater than106 for computations aiming at determining cosmological parameters through simulation ofclusters of galaxies (like the density of the Universe) [24]. Other useful N-Body simulationsconducted by our group use N equal to 250,000 for Local Group runs, 1.3 million (10,000time-steps) for a Virgo cluster of galaxies (Figure 1), and 3 million (700 time-steps) for a100Mpc CDM Cosmological Volume.Improvements in the performance and quality of N-Body simulations has been soughtin four general areas: 1) faster calculation of the gravitational accelerations; 2) multi-stepping, which is the reduction in number of time steps taken by particles in regions of thesimulation where longer dynamical times are expected [25, 24]; 3) volume renormalization,where regions of interest are identi�ed and populated with a greater density of particlesthan the surrounding volume [20, 21]; 4) the use of parallel and vector supercomputingtechniques.The need for rapid calculation of the gravitational accelerations has led to two basicapproaches. The �rst uses grid techniques, relying mainly on the speed of FFT algorithmsfor the calculation of the gravitational �eld. This class includes the PM, P3M [17] andAP3M [9] algorithms. The other approach uses multipole expansions within a hierarchicaldescription of the mass distribution (a tree). This second class includes well known algo-rithms such as the Barnes-Hut tree code [1, 2], the Fast Multipole Method [13, 14] andother variants including the Parallel k-D Tree Gravity code (PKDGRAV).All of the approaches mentioned above set some level of approximation in their accuracyof the calculated gravitational accelerations. Therefore, the comparison of the relative2This picture is in color; if the reviewer does not get a a hard-copy color version of it, he/she could �ndit online on our WWW site (URL: http://www-hpcc.astro.washington.edu/)3



Figure 1: A comparison of a CRAY simulation with 67 thousand particles, to a KSR{1 simulation with 1.3 million particles, shown at a redshift of 2. The CRAY run wasperformed with a vectorized tree-code, whereas the KSR run used the PKDGRAV code.e�ciency of di�erent approaches is hard, because one has to take into account factorslike the type of the physical problem under study, and acceleration-error distributions andcorrelations. For this reason, such a comparison is not attempted in this article. Instead,we focus on performance results for PKDGRAV that correspond to error tolerances whichwe have found to be adequate for typical astrophysical problems.2.1 The k-D Tree StructureThe central data structure in PKDGRAV is a tree structure which forms the hierarchicalrepresentation of the mass distribution. Unlike the more traditional oct-tree used in theBarnes-Hut algorithm, we use a k-D tree [3], which is a balanced binary tree. The root-cellof this tree represents the entire simulation volume. Other cells represent rectangular sub-volumes that contain the mass, center-of-mass, and quadrupole moment of their enclosedregions.To build the k-D tree, we start from the root-cell and bisect recursively the cells throughtheir longest axis, so that an equal number of particles lie in each sub-volume, and thatquadrupole moments of cells are kept to a minimum (see Figure 2). This bisection is accom-plished using Hoare's median �nding algorithm, which is an O(N) average time operationper level of the tree, making the tree building process an O(N log2(N)) operation. Thedepth of the tree is chosen so that we end up with at most 8 particles in the leaf cells (buck-ets). We have found this number to be near optimal for the parallel gravity calculation.4
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P1Figure 2: Two-dimensional k-D Tree distributed over four processors.Several factors motivated the use of k-D tree structure over the classical oct-tree. Thesimplicity of the structure and the availability of fast median �nding algorithms allow fora very e�cient tree-construction. Pointers are unnecessary since each node in the tree canbe indexed so that the �nding of children, parent and sibling nodes are simple bit-shiftoperations. The use of buckets, by which only 2dN=8e nodes are required, makes the treestructure memory-e�cient. Most signi�cantly, it can be extended to a parallel, distributedtree structure in a very natural way.2.2 Calculating GravityPKDGRAV calculates the gravitational accelerations using the well known tree-walkingprocedure of the Barnes-Hut algorithm [2], except that it collects interactions for entirebuckets rather than single particles. Thus, it amortizes the cost of tree traversal for abucket, over all its particles. In the tree building phase, PKDGRAV assigns to each cell ofthe tree an opening radius about its center-of-mass. This is de�ned as,ropen = 2Bmaxp3 � + Bcenter (1)where Bmax and Bcenter are the maximum distances from a particle in the cell to the center-of-mass and center-of-cell respectively. � is a user speci�ed accuracy parameter which issimilar to the traditional � parameter of the Barnes-Hut code; notice that decreasing � inEquation 1, increases ropen.The opening radii are used in theWalk phase of the algorithm as follows: for each bucketBi, PKDGRAV starts descending the k-D tree, \opening" those cells whose ropen intersectwith Bi (see Figure 3). If a cell is \opened," then PKDGRAV repeats the intersection-testwith Bi for the cell's children. Otherwise, the cell is added to the particle-cell interactionlist of Bi. When PKDGRAV reaches the leaves of the tree and a bucket Bj is opened, all ofBj's particles are added to the particle-particle interaction list of Bi. Once the tree has beentraversed in this manner we can calculate the gravitational acceleration for each particle of5
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Figure 3: Opening radius for a cell in the k-D tree, intersecting bucket B1 and not bucketB2. This cell is \opened" when walking the tree for B1. When walking the tree for B2, thecell will be added to the particle-cell interaction list of B2.Bi by evaluating the interactions speci�ed in the two lists. PKDGRAV uses a second-ordermultipole expansion to calculate particle-cell interactions.Periodic Boundary ConditionsOne disadvantage of tree codes is that they must deal with periodic boundary conditionsexplicitly, unlike grid codes where this aspect is taken care of implicitly. Although thisadds complexity to any tree code, it is possible to incorporate periodic boundary conditionse�ciently by using approximations to the Ewald summation technique [16, 12]. PKDGRAVdi�ers signi�cantly from the prescription given by [16], which is ill suited to a parallel code.Due to the mathematical technicality of the method we do not provide further descriptionhere except stating that it is ideally suited to parallel computation [30].2.3 Parallel Aspects of the Code2.3.1 Domain DecompositionAchieving e�ective parallelism requires that work be divided equally amongst the processorsin a way which minimizes interprocessor communication during the gravity calculation.Since we only need a crude representation for distant mass, the concept of data localitytranslates directly into spatial locality within the simulation. Each particle can be assigned awork-factor, proportional to the cost of calculating its gravitational acceleration in the priortime-step. Therefore, during domain decomposition, we divide the particles into spatiallylocal regions of approximately equal work.Experience has shown that using a data structure for the domain decomposition thatdoes not coincide with the hierarchical tree for gravity calculation, leads to poor mem-ory scaling with number of processors and/or tedious book-keeping. That is the case, forinstance, when using an Orthogonal Recursive Bisection (ORB) tree for domain decompo-sition and an oct-tree for gravity [28]. Current domain decomposition techniques for theoct-tree case involve forming \costzones," that is, processor domains out of localized sets ofoct-tree cells [29], or \hashed oct-trees" [31]. PKDGRAV uses the ORB tree structure to6



represent the domain decomposition of the simulation volume. The ORB structure is com-pletely compatible with the k-D tree structure used for the gravity calculation (see Figure2). Instead of a median �nder, a root �nder is used to recursively subdivide the simulationvolume so that the sums of the work-factors in each processor domain are equal. Once thishas been done, each processor builds a local tree from the particles within its domain. Thisentire domain decomposition and tree building process are fully parallelizable and incurnegligible cost to the overall gravity calculation.2.3.2 Parallel tree-walking phaseThe Walk phase starts from the root-cell of the domain decomposition tree (ORB tree),each processor having a local copy of this tree, and descends from its leaf-cells into the localtrees stored on each processor. PKDGRAV can index the parent, sibling and children ofa cell. Therefore, it can traverse a k-D tree stored on another processor in an architectureindependent way. Non-local cells are identi�ed uniquely by their cell index and their domainnumber (or processor identi�er). Hence, tree walking the distributed data structure isidentical to tree walking on a single processor, except that PKDGRAV needs to keep trackof the domain number of the local tree upon which the walk is performed. Interactionlists are evaluated as described earlier, making Walk the only phase where interprocessorcommunication takes place, after the domain decomposition.2.3.3 The Machine Dependent LayerA small library of high level functions called MDL (Machine Dependent Layer) handles allparallel aspects of the code. This keeps the main gravity code architecture-independentand simpli�es porting. For example, MDL provides a memory swapping primitive to moveparticles between processors during domain decomposition. Furthermore, MDL providesmemory sharing primitives allowing local arrays of data to be visible to all processors.These primitives support access to non-local cells and particles during the Walk phase. Inparticular, a procedure called mdlAquire can be used to request and receive non-local databy providing an index into a non-local array, and an identi�er for the processor that ownsthat array. On the KSR, we rely on the shared address space to implement mdlAquire.On distributed memory machines, such as the INTEL Paragon and IBM's SP-2, wemaintain a local software cache on each processor. When a processor requests a cell orparticle that is not in its cache, the request is sent to the appropriate processor that ownsthe data. While waiting for the data to be sent back, the requesting processor handlescache-requests sent from other processors. The owner processor sends back a cache linecomprised of more than a single cell or particle, in an attempt to amortize the e�ects oflatency and message passing overhead. This cache line is inserted into the local cache, anda pointer to the requested element is returned. To improve responsiveness of the softwarecache, after every tenth access to the cache MDL checks whether any requests for data havearrived; if so, it services these �rst. 7



3 Experimental MethodologyIn this section we present the framework that we used to study the performance character-istics of the N-Body codes under investigation.3.1 Parameters employedA number of parameters determine the accuracy and validity of the physical conclusionsdrawn from cosmological simulation results; the same parameters a�ect parallel simulationperformance. The most important are: the number of particles N; the accuracy parameterof the \opening criterion" �; Redshift, which determines the spatial con�guration of particlesat the beginning of the simulation; and nSteps, the total number of time-steps for whichthe N-Body algorithm is executed. These parameters de�ne a wide range of possible runs.For the simulations presented in this paper we used the values of Table 1.N � Redshift nSteps32; 768 to 1; 300; 000 0:55 49 2Table 1: Physical parameters used in our simulations.The maximum number of particles of a large simulation is constrained by the processor-cycles available for the computation of gravitational interactions and by the main memoryrequired to store the particles and the tree structure. These constraints become morestringent when conducting performance experiments: in general, less computing-time isdedicated to performance monitoring; instrumented codes are slower; instrumentation in-creases memory consumption and traces take large amounts of disk space. Nevertheless, wecan run a larger number of simulations on smaller data-sets and collect enough evidence toextrapolate the behavior of the \production-runs." In this paper we present results for Nranging from 32; 768 to 1; 300; 000.We use a Redshift value of 49, which corresponds to the initial con�guration of particlesused in the cosmological simulations of our group. This con�guration is spatially uniform;therefore, we are conducting further experiments for a Redshift of 2, which corresponds tohighly clustered particle-con�gurations. 3We run the tree-codes only for two time-steps due to limitations on available multipro-cessor resources. This is not a problem from the performance analysis standpoint, however,because the parallel execution of the tree-algorithm has very similar performance character-istics across successive time-steps: particles move slowly from time-step to time-step and,thus, the overall particle-con�guration changes very slowly. We use 2 time-steps insteadof 1, because the domain decomposition in the �rst time-step is conducted after assigningall particles with an identical work-factor. From the second time-step and on, PKDGRAVassigns each particle with a work-factor proportional to the time spent computing its ac-celeration in the previous time-step. Running simulations for two time-steps allows us toexamine any possible e�ects that this may have.3The results will be included in the �nal draft. 8



Processor INTEL i860XP Custom VLSIClock cycle 50MHz 40MHzData Cache 16KB 256KBInstruction Cache 16KB 256KBMemory per Node 32MB 32MBPeak Mops per sec per node 75 80Topology Mesh RingOperating System OSF/1 Release 1.0.4 KSR OSTable 2: System characteristics.� is set to 0:55 because, for the simulation experiments of interest, extensive tests showedthat this value guarantees satisfactory error-bounds for physical criteria de�ned by As-tronomers (e.g. relative and absolute acceleration error).3.2 Parallel Platforms employedThe tree-codes were initially developed in C, for the KSR's shared-memory paradigm(pthread libraries) and later ported to the PVM message-passing library [23]. Due to thelarge overhead of PVM runs on networks of workstations, we ported the programs ontoINTEL's NX message-passing library, in order to assess their performance on the Paragonscalable message-passing environment. We conducted our experiments on two di�erent plat-forms: a 64-processor Kendall Square Research KSR-2 multiprocessor [5] and a 16-processorINTEL Paragon system [7]. Both machines are installed in the Department of ComputerScience-Engineering at the University of Washington. We also used the INTEL Paragon ofthe San Diego Supercomputing Center (with a maximum queue size of 256 nodes).The KSR-2 is a \Cache Only Memory Architecture" multiprocessor with 40MHz custom-built processors, con�gured as a hierarchy of slotted, packetized rings with 32 processorson each leaf-level ring. The KSR processor can execute two instructions per cycle; oneinstruction can be an address calculation, load/store or branch and the other can be either aninteger or oating-point instruction. KSR-2 provides a shared address space with physicallydistributed memory. Memory modules of each node are playing the role of a very large,hardware-managed cache. Cache coherence is provided through a hierarchical directoryscheme which enforces sequential consistency.The INTEL Paragon is a scalable message-passing system, based on the INTEL i860XP,50MHz microprocessor. The i860 has independent integer and oating point units, andthe oating point unit has an independent pipeline adder and multiplier. Communicationbetween the processors is carried through a mesh interconnection network with 200 MByte-per-second links. Table 2 summarizes the basic system characteristics of the KSR-2 and theINTEL Paragon multiprocessors.
9



Machine Size (P)1 2 4 8 16 32 64 60N Intel ksr Intel ksr Intel ksr Intel ksr Intel ksr Intel ksr Intel ksr32k 69 102 111 181 201 348 313 668 458 1040 na 1724 na 234067k 63 99 112 187 199 361 361 675 551 1182 486 1854 na 3267125k 84 95 143 178 244 323 450 628 715 1101 964 1865 442 3378250k 56 82 101 156 184 292 333 528 537 1004 461 1694 409 2232500k 47 72 92 132 169 243 301 502 486 921 462 1557 448 na1.3M na na na na na na na na 154 315 333 na 242 naTable 3: Science Rate (in particles per seconds).3.3 Performance Characteristics soughtA �rst goal of our study is to identify system requirements of the tree-codes in terms ofrunning time, memory allocation, and sustained communication rates. We are interested inexamining the scaling of these requirements with increasing problem and machine sizes andin comparing the relative performance of available parallel architectures. A second goal is todiscover and identify bottlenecks of the cosmological simulation that hinder its performance.A third goal is to attribute performance bottlenecks either to the algorithms employed, theirparallel implementation, or the inherent limitations of the multiprocessors used. Also, weare interested in studying various aspects of the scalability of PKDGRAV. Finally, we needto describe PKDGRAV's performance in terms of metrics of \physical signi�cance." Forinstance, it is more relevant to use the number of gravitational interactions performed persecond as an estimate for the aggregate performance of a certain parallel machine, thanthe count of bare Mops per second. Notably, in the case of tree-structured gravitationalalgorithms, the Mop rate does not characterize accurately the performance of the parallelcodes, because these involve also a large number of integer and/or pointer operations duringtree-walking.With the above goals in mind, we instrumented the tree-codes to generate and collectapplication traits characterizing their computation, communication, and memory require-ments, and their scalability. To gather \raw" performance data, we measured running timesfor the execution of the N-Body algorithm, as well as the execution of the most important ofits phases. We instrumented malloc to keep track of dynamically allocated memory. In thecase of INTEL's Paragon message-passing multiprocessor, we instrumented communicationroutines manually to collect communication traces. Furthermore, we used the performancemonitoring environment on the INTEL Paragon [26]: Xipd [8] for automatic instrumentationand trace collection and Paragraph [15] for performance visualization. On the KSR-2, weused manual instrumentation only, because the pmon monitoring libraries failed to producereliable data. 10
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Figure 4: Running Times of two time-step simulations.4 Performance MeasurementsIn this section, we summarize results from our performance experiments and assess thesystem requirements of the tree-codes examined. In early runs, it turned out that theINTEL Paragon sequential performance was twice as slow as that of the KSR, regardlessof the value of N. This is partly due to the use of IEEE oating-point arithmetic on theParagon. To improve performance, we compiled the tree-codes on the Paragon with the-knoieee option. We expect that this does not a�ect severely the accuracy of Paragonsimulations.4.1 ProcessingFigure 4 presents measurements of the running times of two simulations with 250,000 and500,000 particles respectively, proceeding for two time steps. Table 3 gives the Science Rate,an application-oriented performance metric de�ned as the number of particles N over thetime it takes to complete one time-step of a cosmological simulation [6]. From Figure 4 andTable 3 we can easily see that KSR-2 outperforms the INTEL Paragon, both in terms ofabsolute Science Rate �gures as well as in terms of the scaling of the Science Rate withthe number of available processors. In particular, the Science Rate on the KSR-2 increasesas we scale the machine size to 60 processors, whereas on the Paragon it starts decreasingover 16 processors. This can be seen also in Figure 4, where the running time on theParagon levels-o� as we scale the number of available processors to values larger than 16.We elaborate on this in the next section.Another interesting remark is that, for our benchmarks, the single-processor perfor-mance of the KSR-2 is approximately 1:5 times better than that of the Paragon. This is11



Machine Flop Count Flop Rate (MFlops/sec)Size (P) in MFlops KSR-2 Paragon1 22803.4 12.07 7.874 23232.41 47.55 31.7916 23661.73 190.95 127.6932 24189.15 373.66 253.9560/64 24247.75 579.34 512.64128 24465.65 n/a 1029.27Table 4: Mop counts and rates: two time-steps, 250,000 particles.Machine Size (P)1 2 4 8 16N Intel ksr Intel ksr Intel ksr Intel ksr Intel ksr32k 17.6 na 30.1 na 55.08 na 105.14 na 205.2 na67k 22.9 27.3 35.4 26 60.4 29.6 110.38 27 210.35 29125k 32.34 41.3 44.83 39.4 69.8 39.6 119.77 40 219.7 40250k 52.19 78.5 64.68 78.6 89.6 78.8 139.6 80.2 239.58 82.2500k 91.9 na 104.38 na 129.36 na 179.32 na 279.29 naTable 5: Aggregate Memory Allocation (in MBytes)attributed mainly to the substantially larger cache of the KSR-2 and the shared-memoryparadigm which allows a single-processor run to use memory pages residing on other pro-cessors and, thus, to reduce paging. Both parallel codes, achieve a high Mop/sec rate inthe oating-point intensive Interact phase of the algorithm. Table 4 presents the aggregatenumber of ops and the op rate for the Interact phase of a two time-step, 250,000-particlesimulation. To derive the op count we measured the oating-point operations in the codesexamined. This gave a 34 op count for a particle-particle interaction and a 71 op countfor a particle-cell interaction.4.2 MemoryTo get an estimate of the memory requirements of cosmological simulations, we instrumentedmalloc. The collected data are presented in Table 5. It is noted that most of the arraysstatically allocated on the KSR-2, are allocated dynamically on the Paragon for performancereasons. On the other hand, oats are 8-bytes long on the KSR-2, and 4-bytes long onthe Paragon. This explains the higher memory consumption on single-processor KSR-2runs. Things change drastically for larger pools of processors, because of the extra memoryallocated on every Paragon node for the implementation of \particle" and \cell" caches.Each cache is 2 million bytes large. The object code is 1.34MB on the KSR-2 and 0.35MBon the Paragon (both codes were compiled with the -O2 option).12



N 2 4 8 16 3232k 1.98 4.5 8.57 14.04 15.6367k 3.75 8.87 15.67 25.75125k 5.19 11.25 18.62 30.86 30.57250k 9.1 n/a 19.52 31.69 n/a 51.18500k 15.62 35 55.85 87.1 n/aTable 6: Aggregate Communication Volume per time-step (in MBytes)4.3 CommunicationTable 6 gives information about the total volume of messages sent between processors dur-ing our Paragon simulations. The left diagram of Figure 5 gives a pictorial representation ofdata from this Table. As expected, the total communication tra�c increases with problemsize and the number of processors. To estimate the average communication bandwidth thateach Paragon processor utilizes during cosmological simulation, we divide the average vol-ume of communication per processor and time-step, over the average duration of a time-step.We call this, per-processor communication rate; its values are presented in the right diagramof Figure 5. On the Paragon, given its 200MBytes/sec node-to-router sustained bandwidth,
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Figure 5: Volume of Communicationnode-to-node communication does not become a bottleneck. Furthermore, even under themore restrictive assumption of a random message tra�c, the per-processor communicationrate does not exceed the sustainable per-processor bandwidth, which is determined by thebisection width of the Paragon mesh [19, 27]. Another interesting remark from Figure 513
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Number of Messages dispatched Figure 6: Communication pro�le: 32 processors, 2 time steps, 125,000-particle simulation(right) is that, in most cases, the per-processor communication rate decreases when increas-ing the problem-size (N) and keeping the number of processors �xed. This means that thecommunication-to-computation ratio decreases as the problem size gets bigger.Finally, we note that cosmological simulations produce bursty message tra�c. This be-comes clear from Figure 6, which displays the number of messages sent between processorsduring the �rst two time-steps of a 500,000-particle simulation, running on a 32-processorParagon. Since the data presented here correspond to a Redshift of 49, the two communica-tion bursts of Figure 6 are expected to be due to the �lling of the MDL caches rather than todomain decomposition. Further experiments, however, showed that the total parallel timespent in tree-building is negligible and, thus, the e�ects of the observed message bursts toparallel performance are not signi�cant.5 Scaling IssuesTo investigate the scaling properties of the tree-codes, we plot the partition of the runningtime to the three most time-consuming phases of the N-Body algorithm: Interact, Walk,and Ewald. The diagrams in Figure 7 present the breakups for two time-steps of 125,000-and 250,000-particle simulations. From the plots in Figure 7 we can see that the scaling ofthe Interact and the Ewald phases is satisfactory on both platforms. TheWalk phase, whichinvolves communication between processors, however, becomes the bottleneck to Paragonperformance, as we increase the number of processors over 16.Figure 8, presents the relative speedups of the three phases of the algorithm, that is theparallel execution time of a given phase over its sequential time on a single processor of thesame architecture, versus the number of available processors. Notably, the execution timeof the Walk phase on the Paragon is practically constant. Consequently, given the linear14
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