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Abstract—Geo-distributed data centers (DCs) have a substan-
tial impact on global electricity consumption and carbon emis-
sions, with their energy demands expected to increase alongside
emerging technologies such as Generative Artificial Intelligence
(GenAI) and Natural Language Understanding (NLU). In re-
sponse to environmental and operational concerns, major cloud
providers are investing in DC infrastructures powered by renew-
able energy sources (RES). However, the design and management
of energy-efficient data centers present new challenges. Current
forecasting models for RES production and electricity grid energy
mix are often limited in accuracy and forecasting horizon,
hindering carbon-aware service management. To tackle these
challenges, we introduce CarbonOracle, a Machine Learning
(ML) service that automates data extraction from self-hosted
RES, energy grids, and weather APIs, while also simplifying
the ML training and forecast of RES production and electricity
grid carbon emissions. Its application programming interface
serves ML-based forecasts for RES production (e.g., solar, wind)
and energy mix metrics, designed to support carbon-aware
deployments, enabling integration with container schedulers and
other applications. Through a comprehensive evaluation over a
real data center testbed, our results show that CarbonOracle has
an error rate of approximately 9% for forecasts related to self-
hosted photovoltaic (PV) panels, while its forecasts for electricity
grid carbon emissions have an error rate of less than 4%.

Index Terms—Data centers, Energy Modeling, Sustainable
Computing, Machine Learning.

I. INTRODUCTION

Geo-distributed data centers (DCs) require vast amounts
of electricity to operate. Recent studies estimate that data
centers consumed between 240 and 340 TWh of electricity
in 2022, representing roughly 1-1.3% of the global electricity
demand [1], [2]. This vast energy toll not only increases
the operational costs of DC owners but also negatively con-
tributes to global carbon emissions. In 2020 alone, DCs were
responsible for emitting approximately 330 Million metric
tons of CO2 [2], and projections indicate this figure could
rise up to 2.5 Billion tons by 2030, driven by the growing
electricity demands for Generative AI [3]. Current trends
reflect this increase, with Google DCs seeing a 48% rise
in CO2 emissions since 2019 [4]. This situation exemplifies
the growing pressure on tech companies to balance digital

expansion with sustainable computing practices, in line with
initiatives such as the European Green Deal [5] and the UK
net-zero policies [6]. Major cloud providers, such as Google,
AWS, and Microsoft, have promised to deliver carbon-neutral
services in the coming years [7]–[9], by investing in greener
infrastructure powered by renewable energy sources (RES).

The latter brings new challenges in the design, imple-
mentation, and operation of data centers [10]. Targeting
the minimization of carbon emissions, researchers propose
“smart” workload scheduling and placement on the Edge-
Cloud Computing continuum [11]–[13]. These systems orga-
nize the workload execution so that during periods where the
electricity grid is using low carbon energy sources [12], such
as during windy weather that boosts energy production from
wind turbines, or executing the workload when self-hosted
renewable energy production is higher, like a solar-powered
data center being most efficient during sunny middays [13].
Operators may also manage multiple micro-DCs distributed
across different locations—ranging from cities to countries or
continents. In these geo-distributed DCs, energy production
from RES depends on regional weather patterns and the
local day-night cycle, while each host nation’s energy mix
influences overall carbon emissions [11]. In these cases, long-
term and accurate forecasts are critical for both RES-equipped
geo-distributed DCs and grid energy mix to provide more
effective service management.

Unfortunately, current solutions fall short when providing
long-term predictions. On the one hand, general models for
RES production need as input the current and forecast weather
conditions along with a large number of parameters that de-
scribe the RES installation. For example, PV forecast models
need the size of the PVs, their orientation and installation
angles, and the level of dust on them, among others [14] [15].
It is almost impossible for the average researcher to know
these details, so the predictions of the latter models introduce
a notable error. In addition, the latter models cannot capture
fine-grained properties of self-hosted RES, like cumulative
failures and performance degradation. On the other hand,
there are many services providing metrics for the grid energy



mix of various countries, like ENTSO-e [16] or Electricity
Maps [17] , but with no or limited forecast horizon (i.e., max
24 hours). This situation drives researchers that build carbon-
aware services, either to create their own forecast models,
which introduces a high learning curve related to AI/ML
methods and increases the implementation duration, or to use
historical data, assuming their values are known [12].

To tackle these problems, we introduce CarbonOracle, an
automated ML service for modeling grid energy mix and
RES to facilitate carbon-aware deployments and algorithms.
Specifically, CarbonOracle service: (i) introduces an auto-
mated process for data extraction and scraping of self-hosted
RES, grid energy mix online sites, and weather data from
APIs; (ii) abstracts the AI/ML forecast training methodology
and materializes the latter methodology into two training
pipelines, having as targets the production values of RES
and the energy mix metrics, namely, PV and wind production
levels, overall grid energy consumption, and country’s forecast
carbon emissions; and (iii) offers a high-level RESTful appli-
cation programming interface (API), which allows researchers
and programs, like container schedulers (e.g., Kubernetes), to
retrieve forecasting data. We have evaluated our methodology
with real-world data extracted from three self-hosted RES
photovoltaic (PV) panel racks [10] and on energy grid data
from Cyprus [18]. Our results indicate that CarbonOracle
achieves high performance with a small error, about 9%, for
PV panels, while Energy Mix modeling predicts the carbon
emissions of the country with an error of about 4%.

The rest of the paper is structured as follows: Sec. II
introduces a motivating example about the topic. Next, Sec. III
and IV show the system overview and its details. In Sec. V,
we evaluate the AI/ML models, while Sec. VI and VII present
the related work and conclude the paper, respectively.

II. MOTIVATING EXAMPLE

To illustrate the practical application of CarbonOracle, con-
sider a use case involving a company focusing on AI services
that operate on self-hosted cloud infrastructures (micro-DCs)
across multiple regions. Given the energy demands related
to the training of deep learning (DL) models, such as large
language models (LLMs), and the company’s dedication to en-
vironmental neutrality, its micro-DCs are equipped with RES.
The company seeks to minimize its overall carbon emissions
by creating an autonomous system that determines “when”
and “where” the ML training and inference workloads should
be executed, reducing its carbon footprint. This autonomous
system requires accurate forecasts of energy production from
the company’s RES, as well as predictions of the electricity
grid’s carbon intensity. However, the company’s engineers lack
the expertise to build these forecasting models, and existing
online services do not provide long-term predictions for carbon
intensity across different regions.

To address these challenges, engineers working on carbon-
aware systems can leverage CarbonOracle, an automated ML
service specifically designed for forecasting renewable energy
production and grid carbon emissions. CarbonOracle simpli-

fies the process by automatically collecting the necessary
data and building and storing the required ML models for
accurate forecasting. Through its API, users can seamlessly
retrieve predictions for their renewable energy sources and grid
carbon intensity, integrating this information into their auto-
scheduling and workload placement systems. Additionally,
users can easily add new data sources to account for future
RES deployments or grid emissions from new locations.

III. THE CARBONORACLE SERVICE

A. Features & Objectives

To facilitate advanced carbon-aware service orchestrators
that operate on modern computing paradigms such as RES-
enabled geo-distributed DCs, CarbonOracle is designed with
the following key features:

• Automated Model Generation: automates the creation
and updating of forecasting models for renewable energy
sources (RES) and national energy mixes, tailored to user-
defined configurations.

• Seamless Data Integration: allows the system to ef-
ficiently gather data from diverse sources, including
weather APIs, energy production platforms, and RES
monitors, to perform model training.

• Real-time Inference via API: provides a set of RESTful
API endpoints that allow users and systems to access real-
time forecasts of energy production and carbon emissions.

• Configurable and Customizable Instantiation: enables
users to adjust system parameters, such as geographic
locations and training schedules, and create custom fore-
casting models for various energy sources.

• Extensibility and Ease of Integration: facilitate seam-
less integration with minimal coding effort through
clearly defined programming interfaces, allowing users
to expand and adapt the service.

The primary objective of CarbonOracle is to offer a service
that surpasses the current State-of-the-Art by automating the
(re-) training, storing, and serving of RES and energy mix fore-
cast models, which are critical for carbon-aware scheduling
algorithms within orchestration frameworks.

B. CarbonOracle Overview

Figure 1 depicts a high-level overview of the CarbonOracle
service. The onboarding starts with users submitting a set of
configurations, which include the geo-location of the underly-
ing renewable sources, training periodicity, training and fore-
casting parameters, etc. The system will parse the respective
parameters and configure the underlying service processes.
Specifically, CarbonOracle introduces two processes, namely:
(i) Forecasting Training, which is executed periodically and
asynchronously to create and update the forecasting models;
and (ii) Forecasting Inference through which the system serves
its predictions via its RESTful API.

The Forecasting Training process can be triggered either
from an API request or via Recurrent Triggering, e.g., once per
week, configured through the submitted configurations. When
the Forecasting Training process is triggered, CarbonOracle
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Fig. 1. CarbonOracle Service Overview

asynchronously starts the extraction of the historical data, like
weather, energy production, and energy mix data, from online
sources and self-hosted monitoring datasets, which will later
be injected into the forecasting training pipelines. To do that,
the system utilizes the Historical Data Extractor, which is
responsible for combining the data from various sources into
a single dataset. Specifically, the Historical Data Extractor
invokes a set of Data Connectors, each of which material-
izes the data connector interface and retrieves data from a
distinct source. Currently, the system implements three data
connectors, namely, Country Energy Mix Connector, Weather
Data Connector, and RES Monitoring Data Connector. For
Country Energy Mix Connector and Weather Data Connector,
we utilize website scraping and online APIs, while RES data
is retrieved from a self-hosted monitoring server in which we
export PV metrics data (see Sec. IV-B). Having the latter data
on hand, the service combines them into datasets, one for each
RES and one for each country’s energy mix.

Next, datasets are injected into the Forecasting Training
Modules. Users can design different Forecasting Training
Modules, with the system currently providing by default two
modules, one for PV RES and one for country energy mix
training. Each module performs a set of automated steps to
create each forecasting model. Specifically, the first step is the
pre-processing of the data, including the removal of duplicate
values, handling of missing values, encoding of features, and
so on. Then, the preprocessed datasets are passed through the
training step, in which CarbonOracle evaluates a set of ML/AI
models and selects the best of them. The third and fourth
steps include the (optional) hyper-parameter tuning of the best
model, generating the optimal model for each case, and the

model storing, respectively. CarbonOracle stores and updates
the forecasting models in its Forecasting Models Repository,
having them readily available for inference.

After the training, CarbonOracle can “answer” the questions
about the energy production and carbon emissions of the
pre-defined RES and energy grids. Specifically, CarbonOracle
exposes a RESTful API allowing users and other systems,
like dashboards or Cloud schedulers (e.g., Kubernetes), to
have access to it and its predictions. An external system can
perform an API query providing parameters, like the RES-
id or the specific country, along with the forecasting period
in hours. Having these parameters, CarbonOracle invokes the
Model Loader, which loads the respective forecasting model
from the Forecasting Models Repository and retrieves all
needed data from the online sources. A separate component
is used for that, namely the Inference Data Extractor. This
component utilizes again the implemented Data Connectors
to retrieve the respective data for the specific time period,
e.g., weather forecasts and/or energy mix historical data. Then,
Model Loader introduces the retrieved data to the respective
model and obtains the model’s predictions. If the data are
related to RES sources, CarbonOracle returns the response as
the answer of the CarbonOracle’s API. If forecasts are for
the country’s energy grid, CarbonOracle not only provides the
results but also calculates the current greenhouse gas emissions
factor, providing a more comprehensive answer to the end user.

IV. IMPLEMENTATION DETAILS

In this section, we describe a set of crucial implemen-
tation details about CarbonOracle, namely: (i) the Service’s
Application Programming Interface; (ii) the Integration of
Data Sources; (iii) the Creation of the Datasets; (iv) the
Forecasting Methodologies & Evaluation Metrics; and (v) the
Model Serving, Inference, and Carbon Intensity process.

A. Application Programming Interface (API)

Table I depicts the main API endpoints of the CarbonOracle
service that are designed for managing, retrieving, and updat-
ing renewable energy forecasting and carbon emissions mod-
els. The first endpoint that one should use is /api/config,
which supports both POST and PUT methods, allowing de-
velopers to initialize or update the service’s configuration.
Through this endpoint, key service parameters, such as API
keys for an external data source, can be set or modified
to ensure proper operation. Another endpoint related to the
system configuration is /api/res, which can be used with
the POST method. Through it, users can introduce diverse
RESs and their configurations. For instance, for new PV
panels, users should give the geo-location, the size of the
PVs, the PV panel identifier, and so on. Additionally, the
/api/res/{id} endpoint, using the PUT method, allows
for updating the configuration of a particular RES identified
by its ID, offering granular control over individual RES
resources. To retrieve data, the API offers multiple GET
endpoints, like the /api/res endpoint, which allows users
to fetch a list of available RES, providing an overview of



HTTP Method Endpoint Parameters Output Description
POST & PUT /api/config The initial configuration

of the service.
- Sets or updates the service’s configuration, such

as API keys for external data sources.
POST /api/res/ The initial configurations

of RES, such as location,
characteristics, etc.

- Introduces the configurations for data extraction
and scraping process for RES data.

PUT /api/res/{id}/ Renewable source ID as
parameter.

- Updates a specific resource’s configuration or
forecasting settings identified by ID.

GET /api/res/ - RES data and fore-
casting models.

Retrieves a list of available RES data sources
and forecast models.

GET /api/res/{id}/ Renewable source ID as
parameter.

Specific RES data or
forecast model.

Retrieves detailed data or forecasts for a specific
resource identified by ID.

GET /api/mix/{grid}/ Energy grid identifier as
parameter.

Energy mix forecast
data.

Retrieves the energy mix (e.g., PV, wind, total)
forecast data for a specific energy grid.

TABLE I
CARBONORACLE API ENDPOINTS

them and their configurations. For more specific details, the
/api/res/{id} endpoint can be used to retrieve forecasts
for a particular resource identified by its ID and a particular
time period if the user specifies the forecast horizon. Lastly, the
/api/mix/{grid} endpoint returns the energy mix forecast
for a specific energy grid, including details about energy
production such as solar (PV) and wind energy production,
and hourly carbon intensity, while again users can introduce
a specific forecast horizon.

B. Integration of Data Sources
Next, we describe the integration of our prototype with

different sources. To integrate an external data source into
CarbonOracle, one must create a class that implements the
DataConnector interface and its get data method, which re-
turns the data in a timestamped tabular format. Currently, we
created three connectors for (i) online historical and forecast
weather data; (ii) PV data from three PV self-hosted racks
of panels; and (iii) historical country energy mix data. Since
our PV panels are hosted in Cyprus, we also focus on the
respective regional energy grid for energy mix data.
Online historical and forecast weather data. There are
plenty of online APIs that provide both historical and fore-
casted weather data. Without harming the generality of our
solution, we implement the Weather Data Connector by adopt-
ing weather data from the open-meteo API1. On each request,
the connector retrieves data like solar irradiance parameters,
wind speed, the solar zenith angle, surface orientation, air
temperature, etc., for a specific geo-location.
RES data from PV panels. We use data from a real-world
deployment of three racks of PV panels installed on the rooftop
of our micro-DC, located in the capital of the Republic of
Cyprus. The PV panel racks have different sizes, specifically,
rack-1 (PV1) is 107.1 m2, rack-2 (PV2) is 95.2 m2, and rack-
3 (PV3) is 57.8 m2. The power production data goes through
a Fronius inverter2 that exposes the respective metrics via its
HTTP API interface. To capture in real time the panels’ data,
we build a service that periodically pings the Fronius API and
stores the retrieved data in a time-series monitoring server,
namely Prometheus3. Having stored this data, CarbonOracle’s
PV data connector communicates with Prometheus API, which
allows the retrieval of the data for specific periods.
1 https://open-meteo.com/ 2 https://www.fronius.com/
3 https://prometheus.io/

Energy Mix Data. In order to retrieve the energy mix data
from the energy grid, this connector gathers (scrapes) its data
from the publicly available website of the Cyprus Transmis-
sion System Operator [18]. Specifically, CarbonOracle can
give a time range, and the connector retrieves the hourly
total energy consumption and energy production from wind
and PVs for this period. Unfortunately, the website allows
us only to see data for a specific date, so the connector
downloads, one by one, the HTML pages with the respective
daily measurements until it gathers all related data and then
transforms the data into a tabular form.

C. Creation of the Datasets

Since the energy generation from RES sources and the
energy mix of the country’s power grid are weather-dependent,
we combine weather data with energy mix and RES data
to create the required datasets for the forecasting models’
training. Due to the nature of these datasets, we follow two
approaches, creating two different categories of datasets, one
for each Forecasting Trainer Module. Our rationale is based on
the fact that a RES unit (like a PV panel) is placed in a specific
location, so the corresponding environmental conditions, like
localized weather data, should be tailored to that particular
site. In contrast, modeling the energy mix for an entire country
requires weather data from multiple locations, especially from
the sites of major PV or wind parks.

Starting from the RES forecasting models (PV panels in our
case), CarbonOracle retrieves weather data for the geolocation
of each RES over a selected time period. We should note here
that both geolocation and assigned period should be configured
by the user at the initialization of the service. Then, the
service creates a dataset by joining them on each measurement
timestamp. At the current state of the CarbonOracle service,
the measurements are captured on an hourly base, so the
aforementioned timestamps represent a specific hourly period,
and our predictions have the same granularity. The final
RES-weather dataset includes a column with the RES energy
production measurements and a set of 27 columns of weather
data. Moreover, we include other relevant parameters, such as
the time of sunrise and sunset, the hour of the day, the month of
the year, etc. Afterward, the system creates a separate dataset
for each RES. In our example, this includes three PV racks,
so the system generates three individual datasets.



For the energy mix, CarbonOracle utilizes a slightly differ-
ent approach. Given that the energy production from renewable
sources is currently dominated by large-scale RES parks
(e.g., PV or wind turbine parks) and energy consumption
is concentrated in large cities, which host the majority of
a country’s population, users should define the geolocations
of these parks and the largest cities during the initialization
of the CarbonOracle service. We configured these settings
to include the locations of Cyprus’s three largest PV and
wind parks for energy production, along with the three most
populated cities for energy consumption. The system then
retrieves specific weather data for these locations (e.g., it
will retrieve only wind-related data for the wind parks) along
with the data for the country’s electricity grid. Finally, Car-
bonOracle combines the production data and grid consumption
data with the weather data of the parks’ and the cities’
locations, respectively, creating three (PV, wind, and total
consumption) datasets. Again, energy mix datasets provide
hourly granularity, aligning with the resolution of RES datasets
to ensure consistency in CarbonOracle’s forecasting models.

D. Forecasting Methodologies & Evaluation Metrics
To create our models, we consider two distinct ML method-

ologies, one for RES and one for the grid energy data, because
the behavior of a single RES is changing more slowly than
the changes in a whole country. For that reason, the modeling
part of the energy mix should take into account the temporal
characteristics of the time-series data, which is not that crucial
for the RES models. Next, we provide technical details about
the materialization of the respective training methods and the
AI/ML forecast evaluation metrics.
Renewable Sources (PV panels). In the case of RES, we use
regression modeling with the target metric being the energy
generation of each RES and features being the forecasted
weather data extracted from the aforementioned weather API.
Specifically, we use an autoML library, namely PyCaret [19].
This library automatically optimizes a set of selected AI/ML
models performing hyperparameter tuning techniques, k-fold
cross-validation, and extracting predefined or user-created ML
performance metrics, such as Mean Absolute Error (MAE),
Mean Average Percentage Error (MAPE), Mean Squared Error
(MSE), Root Mean Squared Error (RMSE), etc.
Grid Energy Mix and Consumption. For the energy mix,
we selected our models to take as input not only weather
forecasts but also historical data, so we focus more on time-
series models. Specifically, we utilize a library specialized for
time-series models, namely skforecast4. This library allows
the use of diverse ML models, including popular options like
LightGBM, XGBoost, and CatBoost, among others. Despite
the wide range of skforecast features, our analysis focuses on
the ability to build models based on historical values (lags) and
the ability to provide exogenous features to the forecasting
models. On the one hand, historical values allow a model
to adapt its output based on recent target metric values.
For example, we set lags to be 24 values in all models

4 https://skforecast.org

considering the last-day metrics. According to our research,
a larger historical horizon does not introduce any important
improvement to the models. On the other hand, exogenous
variables are outputs of independent predictors that are not
part of the forecasting model itself. To incorporate them into
the prediction process, their future values must be known in
advance. In our models, the exogenous variables come from
online weather data forecasts. According to the models that
we evaluated, the best performance seems to be provided
by tree-based ensembles, namely Random Forest, Gradient
Boosting, and Extreme Gradient Boosting, compared with
simpler models like a linear regression model or a simple
decision tree. For that reason, our analysis in Section V focuses
on these models, while also the system automatically performs
a hyper-parameter tuning on the model with the best results.
Forecast Evaluation Metrics. In order for users to know the
performance of the generated models, CarbonOracle provides
the following metrics in the model selection process: (i) Mean
Absolute Error (MAE), measures the average magnitude of
the errors between predicted and observed values, offering an
easy interpretation of the accuracy by highlighting errors in the
same units as the data; (ii) Root Mean Square Error (RMSE),
penalizes larger errors as it squares the differences before
averaging them, this metric is susceptible to outliers; (iii) R-
squared (R2), used as an indicator showing the proportion
of the variation in the dependent variable that is predictable
from the independent variables; (iv) Mean Absolute Percent-
age Error (MAPE), a statistical measure that expresses the
prediction error as a percentage, allowing for easy comparison
across different datasets. However, as the MAPE computation
relies on division of the actual value, in cases where this value
is 0 (i.e., no PV production) results can be skewed towards
values near or equal to 0. To avoid this, we opt to use a Tuned
MAPE – tMAPE that excludes error computations when the
actual value is 0; and (v) Tuned Symmetric Mean Absolute
Percentage Error (tSMAPE) is a percentage-based metric that
quantifies forecast accuracy by comparing absolute differences
between predicted and observed values, normalized by their
average, ensuring balance even when actual values are near
zero. Users can select the most important to them, and the
system optimizes the forecasting models accordingly. We set
MAE as the default parameter tuning metric.
Calculation of the Evaluation Metrics. For PV panels,
the system utilizes k-fold cross-validation on the respective
datasets to evaluate regression models. On the contrary, the
forecasting of the grid energy mix takes into account not only
the weather data but also historical data of the predicted values.
So, one cannot simply use the same metrics but needs to
perform a realistic retrospective evaluation on historical data,
or in other words, a backtesting method. This method needs the
prediction horizon (how many values in the future our model
should be able to predict), and the refitting strategy (how often
we will retrain our model). For the evaluation of these models,
we consider a scenario where we would like to predict the
hourly energy mix for the next three days with a step of one
hour. In this process, users can select if the refitting of the



models would be enabled, so the system will emulate a more
realistic evaluation with retraining for specific periods but
sacrificing more time for training, or if refitting is disabled, the
model is trained once (faster), and validation is performed on a
subset of data. By default, CarbonOracle does not use refitting
in its models because we did not observe any significant
performance improvement when we tested this approach.

E. Model Serving, Inference, and Carbon Intensity
With the models generated and stored, the system is able

to retrieve the respective model and, based on the user’s pref-
erences, to forecast its predictions. For the RES models, the
system just fetches the model in memory, requests the weather
API by utilizing the Weather API Connector, and the model
generates the values based solely on the retrieved weather
predictions. For the country energy mix, CarbonOracle follows
a similar approach by fetching the respective model in memory
and retrieving forecast weather data but also needs historical
data on energy mix and consumption. So, CarbonOracle
utilizes the Energy Mix Connector to gather that data, with
the Energy Mix Connector retrieving (scraping) the requested
values. It should be noted that our methodology currently
focuses on predicting PV and wind from the electricity grid,
because in Cyprus the rest of RES, like biomass, are negligible,
and we set a static energy production value, e.g., the average
produced energy per hour for the last 2 years.

For the value of carbon emission measurements, CarbonO-
racle multiplies the generated energy from different sources
with a set of source-based emission factors. An emission
factor is a coefficient that describes the rate at which a given
activity releases greenhouse gases into the atmosphere. It
is the average emission rate of a given source relative to
units of activity or process/processes. Even renewable sources
introduce emission factors since their calculation includes
upstream processes (e.g., the extraction of raw materials for
RES creation), operational processes (e.g., system operation
and maintenance), and downstream processes (e.g., RES park
decommissioning) [20]. So, after the forecast of grid energy
mix predictions, CarbonOracle computes the carbon intensity
for one kWh by translating the generated values into the
percentage of the total energy consumption and combines them
with emission factors based on data reported in [21].

V. EVALUATION

In this section, we focus on the evaluation of our methodol-
ogy and its performance. To evaluate the performance of the
RES and energy grid forecasting methodologies, we configure
CarbonOracle for our RES-enabled micro-DC. Specifically,
our micro-DC is placed in Cyprus and includes three racks
of PV panels. So, we configure the CarbonOracle service
to create forecast ML models from our PV racks and from
Cyprus’s energy mix (see Sec. IV). Then, we configure the
system to log its evaluation results for all models.

A. RES Forecasting Methodology Performance
For evaluating the performance of RES regression models,

CarbonOracle captured metrics every hour from the three racks

Model MAE RMSE R² tMAPE tSMAPE
PV1

Random Forest 392 953.71 0.929 0.37 0.073
Decision Tree 506 1248.16 0.878 0.372 0.09
Extra Trees 385 939.27 0.931 0.567 0.097
K Neighbors 440 1038.83 0.916 0.524 0.12
XGBoost 405 974.88 0.926 1.317 0.588
Gradient Boosting 417 965.71 0.927 2.904 0.592

Baselines
Naive Model 941 1832.55 0.764 0.841 0.1645
PV Formula 458 1021.89 0.926 0.247 0.129

PV2
Random Forest 365 891.51 0.923 0.322 0.091
Decision Tree 477 1173.03 0.866 0.315 0.104
Extra Trees 359 879.60 0.924 0.368 0.114
K Neighbors 392 947.41 0.913 1.110 0.1307
Gradient Boosting 379 909.10 0.918 2.459 0.5924
XGBoost 380 938.20 0.915 1.624 0.5967

Baselines
Naive Model 914 1763.70 0.730 0.972 0.1737
PV Formula 406 908.46 0.928 0.268 0.1343

PV3
Random Forest 212 518.74 0.924 0.621 0.0898
Decision Tree 276 673.50 0.872 0.632 0.1028
Extra Trees 205 504.65 0.928 0.737 0.1114
K Neighbors 233 560.28 0.912 0.852 0.1267
XGBoost 223 552.12 0.915 2.491 0.6060
Gradient Boosting 224 519.69 0.924 4.344 0.6107

Baselines
Naive Model 597 1197.55 0.634 3.507 0.1796
PV Formula 300 646.68 0.893 0.716 0.1427

TABLE II
PERFORMANCE METRICS OF PV RES REGRESSION MODELS

of PV panels for 135 days (3240 data points). Also, we manu-
ally extract an evaluation dataset that includes observations of
7 days (26/06/2024-02/07/2024) and utilize it only to show the
performance of the final (best) models on unknown data. Next,
we focus on finding already created models for PV energy
production modeling in order to utilize them as a baseline.
We found the PVWatts formula [14], [15] (PV Formula) that
estimates the energy output of a PV, based on environmental
parameters and several parameters related to the PV system’s
configuration and performance. Moreover, this formula ag-
gregates multiple factors that reduce the system’s efficiency,
such as inverter losses, wiring losses, soiling, shading, and the
effects of sun-tracking and aging. Since we are not aware of
all these system-specific parameters, we selected to perform
a hyper-parameter tuning method (using Optuna library5) to
find an optimal set of parameters. Moreover, we evaluated a
simpler model proposed in [22], which only takes into account
the current irradiation multiplied by the area of PV panels
and their efficiency. To calculate our panels’ efficiency, we
divide the maximum energy production for each PV panel
with the maximum irritation in the dataset. It is important to
note that CarbonOracle forecasts, as well as PV Formula
and Naive Model, are not limited by the forecast horizon.
The only requirement is having accurate weather predictions
for the forecast period. To this end, Table II shows the metrics
of top-6 models for each PV panel along with the results of
the PV Formula and Naive Model.

Interestingly, for all panels, the best model according to

5 https://optuna.org/



Fig. 2. Real VS Forecast Values of PV panels

Fig. 3. Real VS Forecast Values of PV panels for 7 days

tSMAPE is Random Forest with 7.3%, 9%, and 8.9% for
PV1, PV2, and PV3, respectively. Moreover, more than half of
the evaluated ML/AI models outperform both Naive Model
and PV Formula. Specifically, Naive Model provides a
tSMAPE about 16-18% for all PVs and PV Formula ranging
from 12.9% to 14.2%. We observe a similar pattern for the rest
of the metrics, with most of the AI/ML models outperforming
both Naive Model and PV Formula, except for R2 of PV
Formula results for PV2 panel.

According to tMAPE, Random Forest is almost always
better with an exception being PV2 data, on which Decision
Tree has better tMAPE. For the rest of the metrics, the
Extra Trees regressor has the best performance in all cases.
Specifically, the Extra Trees regressor has a 0.93 R2, followed
by Random Forest and Gradient Boosting with 0.929 and
0.926, respectively. Another important metric for PVs is MAE
which indicates the absolute difference between forecast and
real values. Again in this metric, Extra Trees provide the best
results (PV1=385, PV2=359, PV3=205), followed by other
tree-based models, like Random Forest (392, 365, 212), XG-
Boost (405, 379, 223), and Gradient Boosting (417, 379, 224).

Figure 2 presents scatter plots comparing 2K randomly
selected real points against the forecast values of the best
model based on MAE (Extra Trees Regressor) across our
three PV panels. Each subplot displays the most of points
being around the diagonal line, indicating a strong correlation
between the real and forecast values, with a small spreading
of points highlighting a good model fitting. Furthermore,
Figure 3 depicts the predicted and actual energy production
values of PVs for 7 days (evaluation dataset). The close
alignment between the blue (real values) and green (forecasts)
curves across all three PV panels suggests that the models
accurately capture the patterns in the power output. On a
closer examination of the third day, the forecast values show
a noticeable drop in power output, but the real values do not
follow the same trend. The latter may happen due to inaccurate

Model MAE RMSE R² tMAPE tSMAPE
Wind

Random Forest 11.30 16.16 0.49 0.9740 0.3137
Gradient Boosting 11.03 16.02 0.5042 0.9299 0.3108
XGBoost 11.81 17.32 0.42 0.8795 0.3278
Tuned Model (GB) 10.72 15.63 0.52 0.8739 0.3011

PV
Random Forest 22.35 42.37 0.90 0.1383 0.0808
Gradient Boosting 22.46 42.45 0.90 0.1428 0.0843
XGBoost 24.02 45.28 0.88 0.1484 0.089
Tuned Model (RF) 21.97 40.89 0.90 0.1420 0.0854

Total
Random Forest 28.13 42.46 0.86 0.0488 0.0250
Gradient Boosting 24.06 35.18 0.91 0.0426 0.0216
XGBoost 26.21 38.28 0.89 0.0468 0.0238
Tuned Model (GB) 22.53 32.85 0.92 0.0404 0.0203

TABLE III
WIND, PV, AND TOTAL FORECAST METRICS

weather forecasts or local weather conditions, indicating a
potential limitation in our methodology, which totally relies
on highly accurate weather observations.
Key Takeaway: Through our evaluation, we highlighted that
our methodology outperforms current approaches and simple
models that are used for workload management in geo-
distributed data centers providing much better performance
metrics and reducing the mean absolute error by at least 12%.

B. Grid Energy Mix Forecasting Methodology Performance

For the energy mix, CarbonOracle is configured to initially
gather data between 01/01/2022 and 30/5/2024 that includes
hourly total energy consumption and energy production from
wind and PVs. Then, the system divides the dataset into three
sub-datasets, one for each dimension (total, wind, PV), and
applies the energy grid forecasting methodology. Following a
feature selection process, CarbonOracle keeps only the rele-
vant weather variables for each dataset, namely: irradiation-
related data for PV production, wind speed data for wind
farm production, and temperature/humidity data for the total
consumption. However, contrary to the PV panels modeling,
there are no available forecasting models for the Republic of
Cyprus grid energy mix. So, we only investigate different
models of our methodology on historical real-world data.
To calculate the evaluation metrics, the system generates a
prediction for a 72-hour horizon, as described in Sec. IV-D.

Table III introduces the results of examined models for
Wind and PV energy production along with the Total energy
consumption. Starting from the wind-generated energy, we
observe that Gradient Boosting outperforms Random Forest
and Extreme Gradient Boosting (XGBoost) in MAE, RMSE,
and R2, with 11.03, 16.0, and 0.50, respectively, compared
to 11.3/16.16/0.49 of Random Forest and 11.81/17.32/0.42 of
XGBoost. Unfortunately, the low values of R2 indicate a poor
fit of all models which is also depicted in high tSMAPE error
values (0.31, 0.31, 0.32). Next, the system tried to improve
the best model according to MAE by performing hyper-
parameter tuning on the Gradient Boosting model achieving
better results, like 10.72 MAE, 0.52 R2, etc. Given the limited
role of wind energy in Cyprus’s energy mix and the variable
nature of wind (e.g., lack of a diurnal pattern and frequent



Fig. 4. Real VS Forecast Values of Wind, PV, and Total Energy

Fig. 5. Real VS Forecast Values of Wind, PV, and Total Energy for 7 days

short-term wind speed fluctuations), CarbonOracle models are
bound to have slightly lower accuracy. This effect could be
mitigated by using a larger sample size during training.

On the contrary, the auto-generated PV models provide
much better results, with the best model based on MAE
being Random Forest (22.35), followed by Gradient Boosting
(22.46) and XGBoost (24.02). Except for that, Random Forest
outperforms the rest of the models in all performance metrics.
Thus, CarbonOracle automatically selected Random Forest
as the best model for hyper-parameter tuning, generating a
tuned Random Forest model. The tuned model provided better
MAE (21.97) and RMSE (40.89), and the same R2 (0.90), but
worsened tMAPE (14%) and tSMAPE (8.54%).

Lastly, CarbonOracle generates forecasts for the Total en-
ergy consumption of the country. In our case, the system
provided the best results, compared to the performance of
wind and PV models. Specifically, Gradient Boosting offers
the best values in all metrics: 24.06 MAE, 35.18 RMSE, 0.91
R2, 4.26% tMAPE, and 2.16% tSMAPE. XGBoost model is
in second place in all metrics, and the worst performance
is provided by the Random Forest model. Following hyper-
parameter tuning, the Gradient Boosting metrics improved,
achieving a 22.53 MAE, 0.92 R2, and 2% tSMAPE.

Figure 4 depicts 2K randomly selected real and predicted
values from our dataset for PV and wind energy generation and
the grid energy demands. Clearly, the worst results are given
from wind energy production. PV energy production provides
better results, and total energy consumption forecasts highlight
the best correlation between forecasts and real values. More-
over, Figure 5 presents the actual and predicted values for PV
and wind energy generation, as well as total consumption, over
the course of one week. As we can see, wind-based generation
does not provide any periodicity, making it difficult for our
model to make the correct predictions. The latter shows a
poor performance of wind forecast models. On the contrary,
PV energy generation and Total energy consumption models
closely follow the same trend as the real data.

Fig. 6. Real VS Forecast Carbon Emission Values for 7 days

Key Takeaway: To this end, CarbonOracle seems to provide
high accuracy for PV energy production and total energy
consumption with an MAE of 21.97 (about 8% tSMAPE
error) and 22.53 (about 2% tSMAPE & 4% tMAPE error),
respectively. However, when an energy source is limited and
unpredictable, like wind-related energy production, the service
forecasts present a slightly higher reported error.

C. Computing Carbon Emissions

As we described earlier, CarbonOracle translates the pre-
dicted values from the grid energy mix models into car-
bon emissions by utilizing the already-known carbon inten-
sity of each source. The carbon emissions are measured in
gCO2eq/kWh, which refers to the grams of CO2 equivalent
emitted per kilowatt-hour of energy produced, providing a
standardized measure to compare the environmental impact
of various greenhouse gases. This metric is commonly used
to assess the carbon footprint of electricity generation sources.
In this section, we compute and compare the carbon emissions
calculated from real-world data and predictions of our models.

Even if the results of carbon emissions were generated
after the sub-models inference, we computed all relevant
performance metrics (MAE, RMSE, R2, tMAPE, tSMAPE).
Specifically, tMAPE and tSMAPE highlight a percentage
error of 8.2% and 3.7%, respectively. Furthermore, the high
R2 (0.88) indicates that a large proportion of the variance
in the dependent variables is explained by the independent
variables in the underlying models, reflecting a strong forecast
fit. Lastly, MAE and RMSE are 44.59 and 64.78, respectively.

To visually evaluate our method, plots of Figure 6 present
a comparison between real and forecasted carbon emissions
in gCO2eq per kWh. In the left plot, the real (blue line) and
forecasted (green line) values follow a similar pattern, with the
model capturing the periodic fluctuations in carbon emissions.
Although minor inconsistencies exist, the overall alignment
between the two curves indicates a high level of forecast
accuracy. The scatter plot on the right depicts 2K randomly se-
lected points, and their distribution further supports the strong
positive correlation between real and forecasted emissions, as
the data points closely follow the diagonal line.
Key Takeaway: The latter results show that even if some
models for energy production do not provide good results,
like the wind-production model, the overall accuracy in the
prediction of carbon emissions of the energy grid is high,
allowing practitioners and systems to make accurate decisions
based on them.

VI. RELATED WORK

Our work relates to modeling RES & energy grid carbon
emissions, as well as carbon-aware schedulers.



A. Energy Grid Carbon Emissions and RES Modeling.
Various efforts have been made to predict carbon emissions

and optimize RES energy usage, however often with limited
prediction horizons. Web services like Electricity Map [17]
and ENTSO-e [16], as well as models by research papers, like
[23] and [24], focus on one-day forecasts, which restrict their
usefulness for longer-term planning. Similarly, other efforts,
like [25] and [26], aim to optimize grid operation and improve
carbon emission forecasts by utilizing only day-ahead weather
data, enhancing accuracy but still focusing on short prediction
windows, while authors in [27] use time-series models exclud-
ing weather data. Recently, efforts have applied DL models to
improve forecast accuracy and extend prediction horizons. For
instance, authors in [28] introduce a Mixture-of-Experts (MoE)
model using LSTMs, CNNs, and transformers, achieving
significant accuracy improvements in load and PV forecasts,
demonstrating the potential of specialized models used for
different energy factors. Furthermore, CarbonCast [29] uses a
hierarchical ML approach to forecast grid carbon intensity for
up to four days. It employs neural networks for production
forecasts of electricity sources and a hybrid CNN-LSTM
to integrate these with historical carbon data and weather
forecasts. In optimizing energy usage, Pahlevan et al. [30] use
linear models to predict PV output for DCs, while authors
in [31] focus on forecasting weather data impacting RES,
though without modeling PV’s energy generation.

While significant advances have been made in ML and
forecasting techniques for RES and grid carbon emissions,
several gaps remain, which our research fulfills, namely: (i) no
existing work combines forecasting models for both RES and
grid carbon emissions in a unified system; (ii) there is a lack of
automated solutions to streamline the creation of these models,
reducing the complexity involved; and (iii) most state-of-the-
art methods are constrained by short prediction horizons,
typically limited to a single day, which limits their practical
applicability for long-term energy planning.

B. Carbon-aware and Energy-aware Load Schedulers
Several works focus on reducing energy consumption and

carbon emissions in computing systems, such as parallel sys-
tems [32], ML models [33], [34] and distributed analytics [12],
[35]. In [35], an FL carbon-aware scheduler is introduced, aim-
ing to optimize training within a fixed carbon footprint budget.
Through simulations using real-world carbon intensity data,
the authors optimize learning performance while minimizing
environmental impact. However, the work only considers the
current carbon intensity without integrating any forecasting
algorithms. Focusing again on FL training, the authors of [13]
propose an FL client selection strategy that minimizes carbon
emissions by leveraging forecasts of computation loads and re-
newable energy production. Their solution is robust to forecast
inaccuracies, a common issue in renewable energy forecasting.
For RES predictions, they use data from Solcast6 that offers
limited free API calls and provides generalized predictions that
are not tailored to specific PV panels.
6 https://solcast.com/

Several works have utilized time-series models for energy
forecasting. The system proposed in [36] employs existing
time-series models to migrate workloads between data cen-
ters, using models similar to those in [27]. In contrast, [22]
presents an optimization approach for energy-efficient resource
allocation in mini DCs, exploiting VMs and energy migrations
between green computing nodes. Notably, the authors of
[11] present a framework that optimizes carbon efficiency
for applications across edge-cloud infrastructures. It primarily
focuses on reducing carbon emissions by accounting for
the variability of renewable energy sources, location-based
carbon intensity, and runtime fluctuations. Although, it does
not incorporate forecasting algorithms for renewable energy
sources or energy grid carbon emissions focusing only on
real-time optimization based on the available data. Wiesner
et al. [12] examine shifting computational workloads to times
when energy is predicted to be less carbon-intensive. Their
findings show that larger forecast windows improve outcomes,
but they note a lack of public forecasting tools for grid carbon
intensity across regions. To assess inaccurate forecasts, they
added artificial noise to the carbon intensity data, revealing
current limitations. In [37], the authors propose a self-adaptive
resource management approach to reduce data center carbon
footprints by minimizing brown energy use and maximizing
renewable energy consumption. Their system reduces brown
energy usage by 21% and increases renewable energy usage
by 10%. However, they use a simple support vector ma-
chine (SVM) regressor to predict solar irradiation rather than
the actual energy production of a PV panel.

The aforementioned systems reduce carbon emissions for
DCs or specific workloads (e.g., FL) relying solely on pre-
existing forecasts or simplistic models with limited focus on
accuracy. So, despite the advancements in energy-efficient
computing and carbon-aware scheduling, the integration of
reliable forecasting mechanisms for RES and carbon emissions
in energy grids remains an open challenge. To this end, Car-
bonOracle tackles this challenge and helps carbon-aware sys-
tems by offering an automated ML model creation, delivering
more accurate predictions, and extending forecast horizons.
This approach aims to enrich both the accuracy and efficiency
of decision-making algorithms in energy management.

VII. CONCLUSION AND FUTURE WORK

In this paper, we introduced CarbonOracle, an autoML
service designed to support carbon-aware DC management by
providing accurate forecasts for renewable energy production
and grid energy mix. By automating the extraction of data
from self-hosted RES, online energy grids, and weather APIs,
CarbonOracle simplifies the process of deploying sustain-
able and efficient services across geo-distributed micro DCs.
Our evaluation shows that CarbonOracle achieves promising
accuracy rates for PV panel production forecasts and the
country’s grid carbon emissions, demonstrating its potential
for real-world applications. Additionally, by integrating AI/ML
methodologies, CarbonOracle addresses the current limitations
in long-term forecasting. The evaluation of our modeling



showed an error of about 9% on real-world data from PVs
and an error of about 4% on electricity grid carbon emissions.

Our future work will focus on expanding our evaluation to
include data from multiple regions with diverse climates and
energy infrastructures, assessing the system’s generalizability.
Incorporating new RES such as hydroelectric and biomass
will enhance versatility, while exploring advanced forecasting
techniques like deep learning models (e.g., LSTMs, GRUs)
could improve the prediction accuracy of less reliable metrics,
such as wind energy. Moreover, extending forecast horizons
and integrating uncertainty quantification will enhance the
robustness and utility of the predictions. Finally, CarbonOra-
cle’s integration with data center operations, such as container
orchestration platforms, will validate practical applicability.
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